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Abstract

The difference between the density of the gas
core of microbubbles and the surrounding media
causes the behavior of microbubbles contrast
agents in an ultrasound field to be nonlinear and
intricate. In addition, many factors affect the
radial oscillations of these microbubbles. Some of
these factors are related with the bubble structure
and its shell material such as the initial radius of
the bubble, shell thickness, viscosity of the shell
material and its elasticity. Other factors are
related with the incident acoustic wave such as
the driving frequency and driving pressure
amplitude. In this simulation study the effects of
pressure and frequency as influential factors on
the stability of the microbubble were studied in
wide range (frequencies are extend from f < f;. to
f = 3f., pressure extends from 0.05 to 1.5 MPa.),
and analyzed using the bifurcation theory to
visualize and characterize the effect of these
factors on the microbubbles behavior. The study
expounded theoretically that the generation the
higher order of subharmonic oscillations is
possible to result at high driving frequencies with
low and appropriate driving pressures.
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1. Introduction

The contrast agents of ultrasound imaging
composed of microbubbles smaller than 7 um in
diameter, encapsulated by a stabilizing thin shell
of different composition, and filled with air or a
gas of lower solubility than air such as a
perfluorocarbon [1]. The oscillation of the
microbubble under ultrasound beam is governed
by many parameters such as the initial bubble
radius, the rheological properties of its shell
material, and the local acoustic power [2]. Due to
the low density of the gas core, these
microbubbles are highly compressible when they
are driven by an ultrasound field. Based on that, at
low acoustic power, the microbubbles destruction
by the ultrasound beam is minimized and
microbubbles oscillate synchronously with the
incident ultrasound and emit non-linear echoes.
With increasing acoustic power of the incident
ultrasound  beam, signals returning from
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microbubbles are increased by several orders of
magnitude due to interactions between the
incident beam and the microbubbles, which
include  fundamental  scattering,  harmonic
resonance and microbubble destruction. In other
words, the bubbles respond in linear or non-linear
mode, the radius of the bubble change linearly in
relation with the amplitude of the applied
ultrasound wave at low acoustic pressure which
result in linear pulsation of bubble, but at high
acoustic pressures the bubbles pulsation become
nonlinear in principle, expansion of bubbles is
unlimited unlike the compressibility of the bubble
[3]. So, it can be considered that the gas bubble
driven in motion by acoustic field is a perfect
example to describe a system with highly
nonlinear behavior which may be considered as a
degree of chaos [6]. This phenomenon of
nonlinearity happens when applying a high
frequency, high amplitude of acoustic field on the
bubbles within the liquid. This complex and
nonlinear behavior gave the microbubbles a great
importance as contrast agent of ultrasound
imaging [3]. Understanding the behavior of the
microbubbles under ultrasound field gives a good
tool for predicting its dynamic behavior, which
help in designing a new and good contrast agent.
To reach this goal we need to expand our
perceptions on behavior of an individual bubble
under a wide range of possible acoustic field
conditions such as driving frequency and
pressure. These perceptions help in selecting a
regime to avert messy motion, because when a
system slips into chaos become tricky to
prognosticate and result in the control loss of its
dynamic behavior [5].

2. Theoretical Model

The common bubbles concentrations in
clinical use of the contrast agents are in order of
1075 to 1076, At these low concentrations, the
bubbles oscillations do not interact. The bubbles
oscillate, absorb and scatter sound independently
of one another. Accordingly, the total radiation
power is the sum of the radiations that comes
from each individual bubble [3]. There are several
models that describe the dynamic behavior of the
microbubbles. The model which was derived by
Lord Rayleigh in 1917 is the oldest and has
become the basis for all other models. All these
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models are second order nonlinear ODE and they
describe the dynamic behavior of an individual
bubble. Church’s model is the common model
which describes the radial oscillations of
encapsulated bubble have a shell thickness much
smaller than the bubble radius [6]. Hoff’s model
is a simplification of Church’'s model, is
developed for visco-elastic thin shelled bubbles.
This model describes the radial oscillations R of
the bubble as a function of time and is given by
equation 1:
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Where R, is the initial radius, R is the time
dependent radius, R and R are the velocity and
acceleration of the bubble's wall, P, is the
equilibrium pressure inside the bubble, p; is the
density of the liquid, y is the polytropic exponent,
M, is the viscosity of the surrounding liquid, G; is
the shear modulus, 1 is the shell viscosity, ds. is
the shell thickness, c is the speed of sound in the
liquid, PG@ is the gradient of the gas pressure
inside the bubble, x andx; are two constants
respectively &, Y4 [7], and Py is the driving
acoustic pressure which is given by equation 2:

Pi(t') = Asin ant (2)

Where A is the amplitude of the driving
frequency.

One of the important parameters in
applications of microbubbles oscillations is the
backscattered  pressure.  Medical imaging
applications of contrast enhanced ultrasound are
the best examples of using the backscattered
pressure from the tissue and ultrasound contrast
agents. The signal that is received is filtered
before establishing the image taken.

Hilgenfeldt et. al calculated the
backscattered pressure by using a 4th order
Runge-Kutta for solving equation (1) using
equation (2) as driving pressure [8], they find the
general formula of the backscattered pressure
Py for far-field ( D »> wave length ) from an
oscillating body (bubble) of given volume as in
equation (3):

Pyt = p’R (2R? + RR) ©)

Where D is the distance from the center of the
bubble to the reviser (in BubbleSim D is one
meter). In this paper the effects of the driving
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pressure and frequency are studied for a single
bubble with wide range of parameters domain. By
collecting the data and analyzing the results more
comprehensive knowledge and better
understanding would be gained about the complex

dynamics and nonlinear  phenomena  of
microbubbles.
3. Complex dynamics of the

bubble’s model and stability range

The oscillation of gas bubbles is known to be
highly nonlinear and complex for moderate
driving  pressure amplitudes [4]. “Moderate
amplitude means amplitude value that extends
from 100 kPa to 750 kPa, amplitudes that used
frequently with diagnostic ultrasound imaging”.
Because of the lack of knowledge of the
rheological parameters of the bubble’s shell and
the complexity of the system resulting from the
interaction of several control parameters (initial
radius, frequency, pressure , viscosity and
elasticity of the shell and surrounding field) it is
difficult to expect and designa the parameters that
provide an insight into the bubble dynamics [9].
The bifurcation diagram (the mathematical
meaning of the Bifurcation is the study of changes
in the topological structure of multiple control
parameters of dynamic fields of a system) enables
us to visualize the bubble behavior in a wide
range and provides a qualitative and valuable
information about where and when a nonlinear
response is likely to occur, and it gives an
impression of the strength of this response.

4, Methods

The bifurcation diagrams are used to study the
dynamics of the system by normalizing the bubble
radius versus different values of driving acoustic
pressure, driving frequency as control parameters
using rheological parameters values of Sonazaid
as contrast agent { G; =50 Mpa, p  =0.99 Pa.s,
dse =4 nm} [10,11], with a 3 um initial radius
bubble, and a resonant frequency of 1.847 MHz.
The procedure had been done using the output
data of "BubbleSim" which is the numerical
software package in Matlab, written by Lars Hoff
to solve his model and simulates the response of
a bubble exposed to an ultrasound pulse. These
data included the response of the bubble's radius
due to the acoustic pressure, the power spectra of
the backscattered signal, and many information of
the bubble behavior. The bubble had been excited
by acoustic frequency signal which is consisted of
150 cycles. After the system has been reached its
stable vibration, the  values of the radial
oscillations ((R(t))) for the last 50 periods have
been calculated at the end of each driving period ,

and normalizing (normalized radius :Rﬁ) , this
resulted in 50 values ( the range consists of 50
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period ) These values has been plotted versus a
parameter of the system, which was called a
"control parameter.”. The control parameter is
then changed by a small amount and the same
procedure is repeated. In the linear region, all
values calculated at the end of each driving
period in this specific range are sketched on each
other (which represents a period single
oscillation) and one point is seen on the
bifurcation diagram in this region. While two
points are seen on the bifurcation diagram when
the bubble exhibits period doubled oscillations,
i.e. repeats only after two oscillations of the
driving sound field. By changing the control
parameter progressively, the period oscillations
increase and more than two point appear in the
diagram until the system response becomes
chaotic [12]. It should be noted that simulation

results with RE > 2 were not considered as they

lose their practical importance due to the possible
microbubble destruction [13]. The bifurcation
diagram appears a slight but important
modification to analyze the dynamics of the
nonlinear phenomena and the condition for each
control parameter. According to this procedure,
the stability of bubble response are studied versus
driving pressure amplitude and driving frequency
as control parameters as follow:

First - The effect of the driving acoustic
pressure amplitude: The normalized of the bubble
radius which is dependent on time with its
typical initial radius (3 pm ) was sketched with
the applied pressure values of acoustic field as the
control parameter domain in the range between
0.05MPa to 1.5 MPa. This procedure enable us to
visualize and characterize the effect of changing
in the driving acoustic pressure on the bubble
behavior in wide rang of acoustic pressure.

Second - The effect of the driving frequency:
Repeats the same procedure, but in this time with
fixed amplitude of acoustic pressure and range of
driving frequencies which are extending from
f<f, to f~3f. where f.is the resonance
frequency of the bubble. This procedure enable us
to visualize and characterize the effect of
changing the driving frequency on the bubble
behavior in wide rang of frequencies.

5. Results and Discussion
5.1. Effect of pressure variations

The bifurcation diagrams figures 1A to 1D
illustrates the variations of the normalized bubble
radius versus pressure, with driving frequencies of
1.25, 1.85 (resonance frequency), 3.75, and 5
MHz respectively. These figures represent the
stable and chaotic oscillations of the microbubble
in wide range of driving pressure. In figure 1A the
frequency is 1.25 MHz, which is less than the
resonance frequency, the oscillation of the
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microbubble significantly and linearly increases
when the pressure exceeds 25 kPa and the curve
touches the threshold limit of disruption at 325
kPa. In figure 1B the frequency is 1.85 MHz
(resonance frequency) at this frequency the
microbubble oscillation increases linearly with the
increase of acoustic pressure until reachs 350 kPa,
then, through a saddle node bifurcation the
microbubble exhibit period doubling (in this
region the bubble repeats the same oscillatory
response once in every two driving periods. So
that, the bubble radiates subharmonic frequency
with order 1/2 of the incident frequency ). The
chaotic oscillations begin at 425 kPa and the
bifurcation diagram touches the threshold limit of
disruption with this chaotic oscillations at 540
kPa. In figure 1C the frequency is 3.75 MHz
which is near the double of the resonance
frequency of the bubble, at this frequency the
oscillation increases linearly up to 260 kPa , then
through a saddle node bifurcation the
microbubble exhibit period doubling and continue
up to 810kPa above which it the microbubble
exhibit a period with quadruple oscillations (in
this region the bubble repeats the same oscillatory
response once every four driving periods. So that,
the bubble radiates subharmonic frequency with
order 1/4 of the incident frequency ). The curve
touches the threshold limit of disruption with this
chaotic oscillations at 975 kPa. In figure 1D the
frequency is 5 MHz. The bubble exhibits linear
oscillation with slightly increases in its amplitude
up to 900 kPa, above this driving pressure the
oscillation shows suddenly large nonlinear
behavior, then shifted to tri-oscillations period (in
this region the bubble repeats the same oscillatory
response once every three driving periods). So
that, the bubble radiates subharmonic frequency
with order 1/3 of the incident frequency ),then the
bifurcation diagram touches the threshold limit of
disruption at 1.48 MPa.

5.2. Effect of frequency variations

The bifurcation diagrams figure 2A to 2D
illustrates the variations of the normalized bubble
radius versus wide range of driving frequency
extends from 0.8 MHz to 5 MHz. While the
applied acoustic pressure amplitude are 0.1, 0.3,
0.5, and 0.7 MPa respectively. Figure 2A shows
that applying small driving pressure and
frequency the bubble oscillates with rough chaotic
oscillations. Increasing the driving frequency
causes reduction of the amplitude of the bubble
oscillations then the behavior rapidly shifts to
almost stable oscillations after 1.2 MHz. In
figures 2B to 2D the chaotic behavior emerges in
bubble response as the pressures increases. These
figures show the chaotic oscillation begins also at
low frequencies, but it extends over a wide range
of frequencies. As the frequency increases, a kind
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of behavior appears, which is the transition from
chaotic oscillations to stable to chaotic
oscillations again this happens via period
doubling, as the pressure amplitude increased the
regions of stable behavior between two chaotic
transitions became narrower. It is worth noting,
that at high frequencies the transition from chaos
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to stable behavior is happening via inverse period
doubling followed by a saddle node bifurcation.
According to these observations, arguably the
microbubbles driven with higher acoustic
pressures become oscillated roughly stable at
higher frequencies.
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Figure 1:. Bifurcation diagrams of normalized bubble radius which have resonant frequency 1.847 MHz, versus
incident acoustic pressure of the frequency (A) 1.25 MHz, (B) 1.85 MHz, (C)3.75 MHz, and (D) 5MHz
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Figure 2: Bifurcation diagrams of normalized bubble radius which has resonant frequency 1.847 MHz,
versus frequency with acoustc pressure of (A) 100 KPa, (B) 300 KPa, (C) 500 KPa, and (D) 700 KPa.

6. Conclusion

The dynamics of the ultrasound contrast
agents were studied for a wide range of system
control parameters (acoustic pressure, and
frequency). The discussion of the above results
confirmed that the oscillations of the
microbubbles are pressure and frequency
dependent, this is consistent with the previous
study [3, 14, 15, 16]. As it is known, in
conventional subharmonic imaging, the bubbles
insonated with a frequency of approximately
twice their natural resonance frequency. If the
pressure amplitude of the incident ultrasound is
sufficient, the bubble will exhibit subharmonic
oscillations at half the driving frequency.
According to these results, in addition to the
generation the subharmonics at half of the driving
frequency, it is possible to force the bubbles to
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exhibit higher order of subharmonics. This study
demonstrated theoretically that the generation the
higher order of subharmonic oscillations is
possible to result when high driving frequencies
with low and appropriate pressures amplitudes are
used, especially when these frequencies are
multiples of the resonant frequency of the bubble,
this is considered a useful information in
subharmonic imaging. On the other hand, This
study showed the possibility of using the
bifurcation theory in simulation the behavior of
bubbles. Moreover, it is considered an useful tool
during designing and manufacturing the new
microbubbles contrast agents by simulations the
effects of driving pressure and frequency on
durability of these microbubbles and their ability
limits in generation the harmonic and
subharmonic.
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