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Abstract:

The optimal spacing between elliptic tubes
cooled by free convection is studied
numerically. A row of isothermal elliptic tubes
are installed in a fixed volume and the spacing
between them is selected according to the
constructal theory (Bejan's theory). In this
theory the spacing between the tubes is chosen
such that the heat transfer density is
maximized. A finite volume method is
employed to solve the governing equations;
SIMPLE algorithm with collocated grid is
utilized for coupling between velocity and
pressure. The range of Rayleigh number is (10°
< Ra < 10°), the range of the axis ratio of the
tubes is (0 < £<0.5), and the working fluid is
air (Pr =0.71). The results show that the
optimal spacing decreases as Rayleigh number
increases for all axis ratios, and the maximum
density of heat transfer increases as the
Raleigh number increases for all axis ratios
and the highest value occurs at axis ratio (¢ =0)
(flat plate) while the lowest value occurs at (&
=0.5) (circular tube). The results also show that
the optimal spacing is unchanged with the axis
ratio at constant Rayleigh number.

Keywords: Constructal theory, optimal
spacing, elliptic tubes, natural convection

Nomenclature
Major axis of the tube (m)
Minor axis of the tube (m)
Height of the tube = 2a(m)
Non-dimensional height of the tube
Gravity acceleration (m/s?)
Dimensionless downstream extension
Dimensionless upstream extension
Thermal conductivity (W/m.k)
Total length of the domain (m)
Pressure (N/m?)
Non-dimensional pressure
Prandtl number
Heat transfer rate (W)
Dimensionless heat transfer density
Rayleigh number
Spacing between the tubes (m)
Dimensionless Spacing
Temperature (°C)
Dimensionless temperature
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Wall temperature (°C)

Ambient temperature (°C)
Horizontal velocity (m/s)
Dimensionless horizontal velocity
Vertical velocity (m/s)
Dimensionless vertical velocity
Volume (m®)

Width (m)

Horizontal Coordinate (m)
Dimensionless Horizontal Coordinate
Vertical coordinate (m)
Dimensionless vertical coordinate
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Greek Symbols

Thermal diffusivity (m?/s)

Coefficient of thermal expansion (K™)
Axis ratio

Density (Kg/m®)

Kinematic viscosity (Pa.s)

= VD % ™K

Subscripts
Max  Maximum value
Opt  Optimum value

1. Introduction

In heat transfer, constructal theory (Bejan's
theory) is wused to generate the flow
configuration by optimizing the heat transfer
density under (space) volume constraint.
Constructal theory states that the flow
configuration is free to morph in the follow-up
of maximal global performance (objective
function) under global constraints, Bejan A.
and Lorente S., (2008), [1]. By depending on
constructal theory, the optimal spacing
between plates and cylinders cooled by natural
convection can be found, in each geometry, the
total volume is fixed and the objective is to
maximize the overall thermal conductance
between the tubes. Bejan A., (1984), [2] found
the optimal spacing between vertical plates
installed in a fixed volume by using the
intersecting of asymptotes method. The study
was employed for isothermal vertical plates
cooled by natural convection. He found that
the optimal spacing was proportional to the
Rayliegh number to the power of (-1/4). Bejan
A. etal. (1995), [3] carried out a numerical and
experimental study of how to choose the
spacing among horizontal cylinders installed in
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a fixed volume cooled by laminar free
convection. They maximized the total density
of heat transfer between the assembly and the
ambient. The Numerical and experimental
simulations cover the Rayleigh number range
of 10* < Ra < 107and Pr = 0.72. Ledezma G.
A. and Bejan A., (1997), [4] investigated
numerically and experimentally the free
convection from staggered vertical plates
installed in fixed space. They maximized the
density of heat transfer and they considered
three degrees of freedom; the horizontal
spacing between adjacent columns, the stagger
between columns and the plate dimensions.
Numerical and experimental simulations cover
the Rayleigh number range of 10* < Ra < 108,
and the working fluid was air with Pr=0.72.
The conclusion demonstrated numerically and
experimentally that it was possible to optimize
geometrically the internal architecture of a
fixed volume such that its global thermal
resistance was minimized. Da Silva and A.
Bejan,(2004),[5] studied numerically the free
convection in vertical converging or diverging
channel with optimized for density of heat
transfer. They considered three degrees of
freedom: the distribution of heat on the wall,
wall to wall spacing, and the angle between the
two walls. The optimization was performed in
the range of 10°< Ra < 107and Pr=0.7. The
walls were partially heated either at top of the
channel or at the bottom of the channel. They
proved that the density of heat transfer
increased by putting the unheated part at the
upper sections. They also showed that the best
angle among the walls was almost zero when
Ra number was high. Da Silva A. K. and Bejan
A., (2005), [6] designed numerically a multi-
scale plates geometry cooled by free
convection by using constructal theory. They
maximized the density of heat transfer rate.
They put small plates in the unused heat
transfer area between the large plates. They
used finite element method to discretize the
governing equation in the range of Rayleigh
number of 10°< Ra < 108, and Pr= 0.7. They
showed that the density of heat transfer
increased by putting the small plates between
the large plates. Da Silva A.K. et al. (2005), [7]
studied the free convection from discrete heat
sources placed in vertical open channel with
the constructal theory. They considered two
cases, the first was single heat source under
variable size, and the second was heat sources
with fixed size. They applied the constructal
theory to maximize the thermal conductance
between the cold air and the discrete heat
sources or to minimize the hot spot on the hot
sources. Rayleigh number was in the range of
(102 < Ra < 10*) and Pr = 0.7. They showed
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that for case one the thermal performance can
be maximized as the heat source not covering
the entire wall at Ra =10° and 10°. Bello-
Ochende T. and Bejan A., (2005), [8] designed
numerically a multi-scale cylinders geometry
cooled by free convection by using constructal
theory. They maximized the density of heat
transfer rate. They put small cylinders in the
unused heat transfer area between the large
cylinders. They used finite element method to
discretize the governing equation in the range
of Rayleigh number of 10°< Ra < 108, and Pr=
0.7. They showed that the density of heat
transfer increased by putting the small
cylinders between the large cylinders. Page L.
et al., (2011), [9] investigated numerically the
free convection from single scale rotating
cylinders. They used the constructal theory to
maximize the density of heat transfer rate. The
range of Rayleigh number was (10" < Ra <
10%), the range of rotating speed was (0< ®,
<10), and the fluid was air (Pr=0.7). They
found that the optimized spacing decreases as
Rayleigh number increases and the heat
transfer density increases. Page L. et al.
(2013), [10] investigated numerically the free
convection  from  multi-scales  rotating
cylinders. They used constructal theory in
order to find the optimal arrangement of the
geometry. The range of Rayleigh number was
(102 < Ra < 10*), the range of rotating speed
was (0 < @, < 10), and the fluid was air
(Pr=0.7). Small cylinders were put in the
unused regions of heat transfer. They found
that there were no effects of the rotating
cylinders on heat transfer density in compare
with the stationary cylinders except at high
speeds of rotation.

It is obvious from the literature that there is no
attempt to find the optimal spacing between
elliptic tubes cooled by natural convection with
constructal theory, so that the present study
uses the constructal theory to find the spacing
numerically.

2. Mathematical Model

Consider a row of elliptic tubes installed in
a fixed volume per unit depth (d L) as shown in
figure (1). The major axis of the elliptic tube is
(a =d/2), the minor axis of the tube is (b). The
axis ratio is defined as (¢ =b/d). The tubes are
maintained at constant wall (hot) temperature
of(T, ), the ambient temperature is
maintained at constant temperature of (T, ) .
The objective is to find the number of tubes or
the tube — to — tube spacing (s) for different
axis ratio (&) in order to maximize the heat
transfer density. Therefore there are two
degrees of freedom in this geometry, the first is
the spacing (s) and the second is the axis ratio
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(¢). The dimensionless governing equations
for steady, laminar, and incompressible flow
with Boussinesq approximation for the density
in the buoyancy term can be written as ; Zhang
Z.etal. (1991), [11]
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Figure (1): Physical Geometry of the Present
Problem

Since the flow is symmetrical between the
tubes, only half of the flow channel between
two tubes can be used to find the spacing in the
numerical solution. Half of the flow channel is
shown in figure (2). The total height of the
channel is (H,+#D+ Hg), the upstream height
(H.) and downstream (Hy) are added to avoid
the applying of incorrect velocity and
temperature at the inlet and outlet of the
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channel, these extension (H,, Hy) are selected
according to accuracy tests as shown later.

The flow and thermal dimensionless boundary
conditions on the half channel are shown in
figure (2) and can be summarized as;

Tube surfaces ( H, <Y < D) (no slip and no

penetration and constant wall temperature
U=V=0,T=1)

Channel Inlet (0 <X< G + g))

(U—aV—O T=0 P—O)
Toy T T

Channel exit (0 <X< (g + g))

a(U,V,T)
(F52

=O,P=O>

Left and right sides of the upstream section

(0 <Y < H,) (free slip and no

penetration

av ap aT
U_E_O’E_O’E_O)

Left side of the downstream section
(H,+D<Y<H,+D+H,;) (free slip and
. v ap aT
no penetration U == 0’5_ 0,5 =0)
Right side of the downstream section
(H,+D<Y<H,+D+H;) (zerostress
aWu) _ 9P _ o 9T _
ax O’ax_ O’ax_ 0)

The right side of the downstream boundary
condition is applied to permit fluid to enter the
domain horizontally in order to avoid the
vertical acceleration which generated by
chimney effects, Bello-Ochende T. and Bejan
A.,(2005), [8].
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Figure (2): Dimensionless  Boundary

Conditions on the Flow Channel

3. Optimization of Heat Transfer
(Maximum Heat Transfer Density)

The spacing between the tubes is to be chosen
such that the heat transfer density (objective
function) is maximized. The heat transfer
density is the heat transfer rate per unit volume
and given as;

w_ 4 q q

TV (s+2b)dw (s +2b)d

(6)

Where g’ = Total heat transfer rate from one
tube per unit width.
The heat transfer density can be written in
non-dimensional form as;
q d?

C = T, TG + 2b)d

()

d, T 1 0T
_ (kg av)d - grar
k(T, —T,)(s+2b) _ (S+28)

Q 8)

The objective function (heat transfer
density) subjected to the constraint that the
total volume per unit width is fixed.

« (d L) = Constant 9)
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4. Numerical Procedure, Grid

Independence Test, and Validation

A FORTRAN program is written to solve
the algebraic equations which obtained by the
finite volume method. The general transport
equation is firstly transformed to curvilinear
coordinates and the convective term is
discretized by hybrid scheme while the
diffusion term is discretized by second order
central scheme. For coupling between the
pressure and velocity SIMPLE algorithm is
employed. To prevent the oscillation in the
pressure field the interpolation method of Rhie,
C. M., and Chow, W. L., (1983), [12], is used.
The solution algorithm can be summarized as;
1- Solve the discretized momentum equations
to find the velocity field.
2- Solve the pressure correction equation to
find the corrected pressure.
3- Correct the velocity field by using the
corrected pressure.
4- Solve the discretized energy equation to find
the temperature.
5- Repeat the steps (1-4) until convergence
attained.

The grid independence test is performed for
three grids for configuration at which (Ra =
10, & =01, and S = 0.3). The grid
independence test showed that the increasing
of the grid size decreases the error percentage,
and the minimum error is at 5050 control
volumes per (D). So this grid size is used and
adopted in all results. Gird independence test is
illustrated in table (1). To apply the correct
velocity and temperature at the inlet and outlet
of the channel, the upstream extension (H,) is
added at the inlet of the channel and
downstream extension (Hg) is added at the
outlet of the channel. It is observed from the
table (2) for (Ra = 10°, £=0.1, and S = 0.1) that
the increasing in downstream extension to (Hgq
=2) and keeping the upstream at (H, =0.5)
leads to reduce the error in the heat transfer
density to 2.5%. Based on this test the value of
(H,=0.5) and (Hy =2) have been depended in
all numerical results.

The numerical results are validated by
comparing the results of (Soy) with the
numerical results of Da Silva and
Bejan,(2004), [4] for natural convection
between vertical isothermal plates (¢ = 0) and
with Bello-Ochende and Bejan, (2005), [8] for
natural  convection between isothermal
cylinders (¢ = 0.5). Both comparisons are
carried out at (Ra =10°). Good agreement can
be shown in table (3) for both cases.
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Table 1: Grid Independence Test for the Case (Ra =
10%, £=0.1, and S =0.3)

Number of Control o Error%
Volumes Per D
30x 30 30.94532
40 x40 ildlell 0.69
50 x 50 31.21666 0.63

Table 2: Downstream Extension Test for the Case
(Ra=10°% £=0.25, H,=0.5 and S =0.1)

I, Q Error %
0.5 31.27484 mmmmmmean

1 32.50780 3.94
1.5 33.41908 2.8

2 34.26481 2.5

Table 3: Comparison of the Numerical Results for
(Sopy) With the Previous Results for Case Ra =10° (¢
=0, and £=0.5)

Flat Plate (£=0)
Da Silva AK., and_Bejan A, (2004), [4] | Present
0.129 | 0.13
Circular Tube (5=0.5)
Bello-Ochende T., and Bejan A.,2005), [8] | Present
0.104 | 0.12

5. Results and Discussion

The numerical results are presented in this
section for, temperature contours, optimal
spacing, and density of heat transfer for
different values of tube axis ratio (0 < £<0.5).
The range of Rayleigh number is (10° < Ra <
10%) and the working fluid is air with (Pr
=0.71).

Figure (3) shows the temperature contour
as a function of the spacing between the tubes
(S) for (Ra=10% and axis ratio (¢ = 0.1). For
small spacing (S < 0.25) the downstream
region is occupied by hot fluid at temperature
same as the wall temperature (red region), this
is due to that the small spacing between the
tubes prevents the cold air to flow downstream
and the air there still hot (overworked fluid).
As the spacing between the tubes increases (S
> 0.25) the downstream temperature begins to
decrease and become less than the wall
temperature and this is clear from the
appearance of the (orange, yellow and green)
regions. At some spacing the thermal boundary
layers from both sides are merged at the
downstream region (the channel is fitted with
the convective flow body) , at this spacing the
heat transfer density becomes maximum and
the spacing represents the optimal spacing, in
this case (Sopx = 0.41). Further increasing in
spacing between the tubes leads to a cold fluid
region to appear in the downstream as seen in
the blue region (underworked fluid) for (S >
1), this large spacing permits the ambient
(cold) fluid to flow downstream and leads to
decrease the heat transfer density since the
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between the tubes

conductance

thermal
decreased.

§=01025 038 039 04 041 042 045 05 06 1.0 12

Figure (3): Temperature contour with various
spacing between the tube for (Ra=10° Pr =0.7,
and axis ratio £=0.1)

As Rayleigh number increases to (Ra=10")
same behavior of the temperature contour to
that of (Ra=10°) as can be observed in figure
(4) except that the optimal spacing here
becomes smaller, note that (So = 0.41 at
Ra=10%) while (Se = 0.22 at Ra=10%), so as
Rayleigh number increases the optimal spacing
decreases because the thermal boundary layer
thickness decreases with increasing of
Rayleigh number, this is also obvious from the
temperature contour for (Ra=10°) in figure (5)
in which the optimal spacing is (S = 0.12)
while the optimal spacing for (Ra=10%) is
(0.22).

01 011013 014 015 017 0.19 0.2 0.21 022 0.2 024 034 04 05 0.7

Figure (4): Temperature contour with various
spacing between the tube for (Ra=10*, Pr =0.7,
and axis ratio £=0.1)

Figures (6, 7, and 8) illustrate the
temperature contours at (¢ = 0.25) and for
Rayleigh numbers (10%, 10° and 10°),
respectively. The temperature contours are
similar to that of (£=0.1) at the same Rayleigh
number.
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0.050.09 0.1 0.11 0.12 013 0.15 0.18 02 03 04
Figure (5): Temperature contour with various
spacing between the tube for (Ra=10°, Pr =0.7,

Figure (6): Temperature contour with various
spacing between the tube for (Ra=10°, Pr
=0.7, and axis ratio £ =0.25)

Figure (7): Temperature contour with various
spacing between the tube for (Ra=10° Pr
=0.7, and axis ratio £=0.25)

005 007 008 009 01 011 042 013

016 0.2 03

Figure (8): Temperature contour with various
spacing between the tube for (Ra=10° Pr
=0.7, and axis ratio £=0.25)
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Figures (9, and 10) show the dimensionless
heat transfer density as a function of the
spacing at different Rayleigh numbers and for
(e =0.1, and 0.25) respectively. These figures
show that there is optimal spacing for each
Rayleigh number. At this value of spacing the
heat transfer density reaches its maximum
value (tops of the curves).

920
. £
e\\za:

70

60
Q 50

40

Raz-lo,,
30
20
Ra=10

i /

o

o 01 0.2 03 04 05 06

5

Figure (9): Heat Transfer Density with

spacing at different Rayleigh numbers for axis
ratio (¢ =0.1)

40 n?e_wo‘
35
30
a
25
20 Ra=10+
15
10 Ra =10
s ﬁ
0
o 01 02 03 0.4 05 0.6
L3
Figure (10): Heat Transfer Density with

spacing at different Rayleigh numbers for axis
ratio (¢ =0.25)

Figure (11) shows the optimal spacing
(Sopt) Vversus Rayleigh number at various axis
ratio (¢ = 0,0.25, and 0.5)), it is interesting to
note that the optimal spacing decreases as
Rayleigh number increases for all values of(e),
as mentioned above the increasing of Rayleigh
number reduces the thermal boundary layer
thickness and thus the optimal spacing
decreased.
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0

1000 10000 100000
Ra

Figure (11): Optimal spacing with Rayleigh
number for different axis ratios

Figure (12) shows the maximum heat transfer
density versus Rayleigh number at various axis
ratio (¢ ), it can be noted that the maximum
heat transfer density increases as Rayleigh
number increases for all values of (¢ ), the
increasing of Rayleigh number leads to
increase the buoyancy force and thus increase
the maximum heat transfer density. It also can
be seen that the highest value of the maximum
heat transfer density occurs at (¢ =0, flat plate)
and decreases as the axis ratio increases until
reaches the lowest value at (¢ =0.5, circular
plate). This can be explained as the axis ratio
increases (the curvature of the surface
increases) the temperature gradient near the
wall deceases and thus the maximum heat
transfer density decreases.

0.45

0.4

Ra=10°

Ra = 10°

Figure (12) Maximum heat transfer density
with Rayleigh number for different axis ratios.

Figure (13) shows the optimal spacing
versus the axis ratio of the tube at different
Rayleigh numbers. The optimal spacing is
almost constant for all values of the axis ratio.
Since the optimal spacing is nearly constant for
all (¢), the number of tubes installed in the
same volume must be reduced as the axis ratio
increases.
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e=00

Figure (13): Optimal spacing with different
axis ratios for Rayleigh number.

6. Conclusions

The conclusions for optimal spacing
between elliptic tubes cooled by natural
convection can be summarized as:-

1- The optimal spacing decreases as
Rayleigh number increases for all axis
ratios. The maximum heat transfer
increases as Rayleigh number increases
for all axis ratios.

2- The highest value of the maximum heat
transfer density occurs at axis ratio (¢ = 0,
flat plate) and lowest value occurs at axis
ratio
(¢ = 0.5, circular plate) for all Rayleigh
numbers.

3- The optimal spacing remains constant as
the axis ratio increases at constant
Rayleigh number.

4-  The number of tubes installed in the same
volume must be reduced as the axis ratio
increases.
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