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Abstract: 

The optimal spacing between elliptic tubes 
cooled by free convection is studied 
numerically. A row of isothermal elliptic tubes 
are installed in a fixed volume and the spacing 
between them is selected according to the 
constructal theory (Bejan's theory). In this 
theory the spacing between the tubes is chosen 
such that the heat transfer density is 
maximized. A finite volume method is 
employed to solve the governing equations; 
SIMPLE algorithm with collocated grid is 
utilized for coupling between velocity and 
pressure. The range of Rayleigh number is (103 
≤ Ra ≤ 105), the range of the axis ratio of the 
tubes is (0 ≤ ε ≤ 0.5), and the working fluid is 
air (Pr =0.71). The results show that the 
optimal spacing decreases as Rayleigh number 
increases for all axis ratios, and the maximum 
density of heat transfer increases as the 
Raleigh number increases for all axis ratios 
and the highest value occurs at axis ratio (ε =0) 
(flat plate) while the lowest value occurs at (ε 
=0.5) (circular tube). The results also show that 
the optimal spacing is unchanged with the axis 
ratio at constant Rayleigh number. 
 
Keywords: Constructal theory, optimal 
spacing, elliptic tubes, natural convection 
 
Nomenclature  
a              Major axis of the tube (m) 
b              Minor axis of the tube (m) 
d              Height of the tube = 2a(m) 
D             Non-dimensional height of the tube 
g                Gravity acceleration (m/s2) 
Hd              Dimensionless downstream extension 
Hu                 Dimensionless upstream extension 
k                Thermal conductivity (W/m.k) 
L                    Total length of the domain (m) 

p            Pressure (N/m2) 
P              Non-dimensional pressure 
Pr            Prandtl number 
q              Heat transfer rate (W) 
Q             Dimensionless heat transfer density 
Ra              Rayleigh number 
s              Spacing between the tubes (m) 

S              Dimensionless Spacing  
t               Temperature (oC) 
T              Dimensionless temperature 

Tw           Wall temperature (oC) 
T∞            Ambient temperature (oC) 
u              Horizontal velocity (m/s) 
U             Dimensionless horizontal velocity 
v              Vertical velocity (m/s) 
V             Dimensionless vertical velocity 
V             Volume (m3) 
w             Width (m) 
x              Horizontal Coordinate (m) 
X             Dimensionless Horizontal Coordinate 
y             Vertical coordinate (m) 
Y             Dimensionless vertical coordinate 
 
Greek Symbols 
α            Thermal diffusivity (m2/s) 
β            Coefficient of thermal expansion (K-1) 
ε            Axis ratio 
ρ           Density (Kg/m3) 
ν           Kinematic viscosity (Pa.s) 
 
Subscripts  
Max     Maximum value 
Opt      Optimum value 
 
1. Introduction 

In heat transfer, constructal theory (Bejan's 
theory) is used to generate the flow 
configuration by optimizing the heat transfer 
density under (space) volume constraint. 
Constructal theory states that the flow 
configuration is free to morph in the follow-up 
of maximal global performance (objective 
function) under global constraints, Bejan A. 
and Lorente S., (2008), [1]. By depending on 
constructal theory, the optimal spacing 
between plates and cylinders cooled by natural 
convection can be found, in each geometry, the 
total volume is fixed and the objective is to 
maximize the overall thermal conductance 
between the tubes. Bejan A., (1984), [2] found 
the optimal spacing between vertical plates 
installed in a fixed volume by using the 
intersecting of asymptotes method. The study 
was employed for isothermal vertical plates 
cooled by natural convection. He found that 
the optimal spacing was proportional to the 
Rayliegh number to the power of (-1/4). Bejan 
A. et al. (1995), [3] carried out a numerical and 
experimental study of how to choose the 
spacing among horizontal cylinders installed in 
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a fixed volume cooled by laminar free 
convection. They maximized the total density 
of heat transfer between the assembly and the 
ambient. The Numerical and experimental 
simulations cover the Rayleigh number range 
of 10⁴ ≤ Ra ≤ 10⁷and Pr = 0.72. Ledezma G. 
A. and Bejan A., (1997), [4] investigated 
numerically and experimentally the free 
convection from staggered vertical plates 
installed in fixed space. They maximized the 
density of heat transfer and they considered 
three degrees of freedom; the horizontal 
spacing between adjacent columns, the stagger 
between columns and the plate dimensions. 
Numerical and experimental simulations cover 
the Rayleigh number range of 10³ ≤ Ra ≤ 10⁶, 
and the working fluid was air with Pr=0.72. 
The conclusion demonstrated numerically and 
experimentally that it was possible to optimize 
geometrically the internal architecture of a 
fixed volume such that its global thermal 
resistance was minimized. Da Silva and A. 
Bejan,(2004),[5] studied numerically the free 
convection in vertical converging or diverging 
channel with optimized for density of heat 
transfer. They considered three degrees of 
freedom: the distribution of heat on the wall, 
wall to wall spacing, and the angle between the 
two walls. The optimization was performed in 
the range of 10⁵≤ Ra ≤ 10⁷and Pr=0.7. The 
walls were partially heated either at top of the 
channel or at the bottom of the channel. They 
proved that the density of heat transfer 
increased by putting the unheated part at the 
upper sections. They also showed that the best 
angle among the walls was almost zero when 
Ra number was high. Da Silva A. K. and Bejan 
A., (2005), [6] designed numerically a multi-
scale plates geometry cooled by free 
convection by using constructal theory. They 
maximized the density of heat transfer rate. 
They put small plates in the unused heat 
transfer area between the large plates. They 
used finite element method to discretize the 
governing equation in the range of Rayleigh 
number of 10⁵≤ Ra ≤ 10⁸, and Pr= 0.7. They 
showed that the density of heat transfer 
increased by putting the small plates between 
the large plates. Da Silva A.K. et al. (2005), [7] 
studied the free convection from discrete heat 
sources placed in vertical open channel with 
the constructal theory. They considered two 
cases, the first was single heat source under 
variable size, and the second was heat sources 
with fixed size. They applied the constructal 
theory to maximize the thermal conductance 
between the cold air and the discrete heat 
sources or to minimize the hot spot on the hot 
sources. Rayleigh number was in the range of 
(10² ≤ Ra ≤ 10⁴) and Pr = 0.7. They showed 

that for case one the thermal performance can 
be maximized as the heat source not covering 
the entire wall at Ra =102 and 103. Bello-
Ochende T. and Bejan A., (2005), [8] designed 
numerically a multi-scale cylinders geometry 
cooled by free convection by using constructal 
theory. They maximized the density of heat 
transfer rate. They put small cylinders in the 
unused heat transfer area between the large 
cylinders. They used finite element method to 
discretize the governing equation in the range 
of Rayleigh number of 10⁵≤ Ra ≤ 10⁸, and Pr= 
0.7. They showed that the density of heat 
transfer increased by putting the small 
cylinders between the large cylinders. Page L. 
et al., (2011), [9] investigated numerically the 
free convection from single scale rotating 
cylinders. They used the constructal theory to 
maximize the density of heat transfer rate. The 
range of Rayleigh number was (101 ≤ Ra ≤ 
10⁴), the range of rotating speed was (0≤ ω̃o  
≤10), and the fluid was air (Pr=0.7). They 
found that the optimized spacing decreases as 
Rayleigh number increases and the heat 
transfer density increases. Page L. et al. 
(2013), [10] investigated numerically the free 
convection from multi-scales rotating 
cylinders. They used constructal theory in 
order to find the optimal arrangement of the 
geometry. The range of Rayleigh number was 
(10² ≤ Ra ≤ 10⁴), the range of rotating speed 
was (0 ≤ ω̃o  ≤ 10), and the fluid was air 
(Pr=0.7). Small cylinders were put in the 
unused regions of heat transfer. They found 
that there were no effects of the rotating 
cylinders on heat transfer density in compare 
with the stationary cylinders except at high 
speeds of rotation.  
It is obvious from the literature that there is no 
attempt to find the optimal spacing between 
elliptic tubes cooled by natural convection with 
constructal theory, so that the present study 
uses the constructal theory to find the spacing 
numerically. 
 
2. Mathematical Model 

Consider a row of elliptic tubes installed in 
a fixed volume per unit depth (d L) as shown in 
figure (1). The major axis of the elliptic tube is 
(a =d/2), the minor axis of the tube is (b). The 
axis ratio is defined as   (ε =b/d). The tubes are 
maintained at constant wall (hot) temperature 
of( 𝑇𝑇𝑤𝑤  ), the ambient temperature is 
maintained at constant temperature of ( 𝑇𝑇∞ ) . 
The objective is to find the number of tubes or 
the tube – to – tube spacing (s) for different 
axis ratio (ε ) in order to maximize the heat 
transfer density. Therefore there are two 
degrees of freedom in this geometry, the first is 
the spacing (s) and the second is the axis ratio           
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(ε). The dimensionless governing equations 
for steady, laminar, and incompressible flow 
with Boussinesq approximation for the density 
in the buoyancy term can be written as ; Zhang 
Z. et al. (1991), [11] 
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Figure (1): Physical Geometry of the Present 
Problem 
 

Since the flow is symmetrical between the 
tubes, only half of the flow channel between 
two tubes can be used to find the spacing in the 
numerical solution. Half of the flow channel is 
shown in figure (2). The total height of the 
channel is (Hu+D+ Hd), the upstream height 
(Hu) and downstream (Hd) are added to avoid 
the applying of incorrect velocity and 
temperature at the inlet and outlet of the 

channel, these extension (Hu, Hd) are selected 
according to accuracy tests as shown later.  
The flow and thermal dimensionless boundary 
conditions on the half channel are shown in 
figure (2) and can be summarized as; 
 
Tube surfaces ( 𝐻𝐻𝑢𝑢 ≤ 𝑌𝑌 ≤ 𝐷𝐷) (no slip and no 
penetration and constant wall temperature 
𝑈𝑈 = 𝑉𝑉 = 0 ,𝑇𝑇 = 1 ) 
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𝜕𝜕𝑌𝑌
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Left and right sides of the upstream section      
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𝜕𝜕𝑋𝑋
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Left side of the downstream section                    

( 𝐻𝐻𝑢𝑢 + 𝐷𝐷 ≤ 𝑌𝑌 ≤ 𝐻𝐻𝑢𝑢 + 𝐷𝐷 + 𝐻𝐻𝑑𝑑) (free slip and 

no penetration  𝑈𝑈 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋
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𝜕𝜕𝑋𝑋
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= 0 )     

Right side of the downstream section                  

( 𝐻𝐻𝑢𝑢 + 𝐷𝐷 ≤ 𝑌𝑌 ≤ 𝐻𝐻𝑢𝑢 + 𝐷𝐷 + 𝐻𝐻𝑑𝑑)      (zero stress 

   𝜕𝜕(𝜕𝜕,𝑈𝑈)
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𝜕𝜕𝑋𝑋
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𝜕𝜕𝑋𝑋

= 0 )     

The right side of the downstream boundary 
condition is applied to permit fluid to enter the 
domain horizontally in order to avoid the 
vertical acceleration which generated by 
chimney effects, Bello-Ochende T. and Bejan  
A.,(2005), [8].   
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Figure (2): Dimensionless Boundary 
Conditions on the Flow Channel    
                                                                                                                      
3. Optimization of Heat Transfer 
(Maximum Heat Transfer Density) 
 
The spacing between the tubes is to be chosen 
such that the heat transfer density (objective 
function) is maximized. The heat transfer 
density is the heat transfer rate per unit volume 
and given as;  

𝑞𝑞‴ =  
𝑞𝑞
𝑉𝑉

=
𝑞𝑞

(𝑠𝑠 + 2𝑏𝑏)𝑑𝑑𝑤𝑤
=

𝑞𝑞′
(𝑠𝑠 + 2𝑏𝑏)𝑑𝑑

          (6) 

Where q′ = Total heat transfer rate from one 
tube per unit width. 

The heat transfer density can be written in 
non-dimensional form as; 
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𝑞𝑞′ 𝑑𝑑2
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The objective function (heat transfer 
density) subjected to the constraint that the 
total volume per unit width is fixed. 

∴ ( 𝑑𝑑 𝐿𝐿) = Constant                                   (9)   

 
 

4. Numerical Procedure, Grid 
Independence Test, and Validation 

A FORTRAN program is written to solve 
the algebraic equations which obtained by the 
finite volume method. The general transport 
equation is firstly transformed to curvilinear 
coordinates and the convective term is 
discretized by hybrid scheme while the 
diffusion term is discretized by second order 
central scheme. For coupling between the 
pressure and velocity SIMPLE algorithm is 
employed. To prevent the oscillation in the 
pressure field the interpolation method of Rhie, 
C. M., and Chow, W. L., (1983), [12], is used. 
The solution algorithm can be summarized as; 
1- Solve the discretized momentum equations 
to find the velocity field. 
2- Solve the pressure correction equation to 
find the corrected pressure. 
3- Correct the velocity field by using the 
corrected pressure. 
4- Solve the discretized energy equation to find 
the temperature. 
5- Repeat the steps (1-4) until convergence 
attained. 
 

The grid independence test is performed for 
three grids for configuration at which (Ra = 
104, ε =0.1, and S = 0.3). The grid 
independence test showed that the increasing 
of the grid size decreases the error percentage, 
and the minimum error is at 50×50 control 
volumes per (D). So this grid size is used and 
adopted in all results. Gird independence test is 
illustrated in table (1).  To apply the correct 
velocity and temperature at the inlet and outlet 
of the channel, the upstream extension (Hu) is 
added at the inlet of the channel and 
downstream extension (Hd) is added at the 
outlet of the channel. It is observed from the 
table (2) for (Ra = 105, ε =0.1, and S = 0.1) that 
the increasing in downstream extension to (Hd 
=2) and keeping the upstream at (Hu =0.5) 
leads to reduce the error in the heat transfer 
density to 2.5%. Based on this test the value of 
(Hu=0.5) and (Hd =2) have been depended in 
all numerical results. 

The numerical results are validated by 
comparing the results of (Sopt) with the 
numerical results of Da Silva and 
Bejan,(2004), [4] for natural convection 
between vertical isothermal plates (ε = 0) and 
with  Bello-Ochende and Bejan, (2005), [8] for 
natural convection between isothermal 
cylinders (ε = 0.5). Both comparisons are 
carried out at (Ra =105). Good agreement can 
be shown in table (3) for both cases. 
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Table 1: Grid Independence Test for the Case (Ra = 
104, ε =0.1, and S =0.3) 

 
 
Table 2: Downstream Extension Test for the Case 
(Ra = 105, ε =0.25, Hu =0.5 and S =0.1) 

 
 
Table 3: Comparison of the Numerical Results for 
(Sopt) with the Previous Results for Case Ra =105 (ε 
= 0, and ε =0.5) 

 
 
5. Results and Discussion   

The numerical results are presented in this 
section for, temperature contours, optimal 
spacing, and density of heat transfer for 
different values of tube axis ratio (0 ≤ ε ≤ 0.5). 
The range of Rayleigh number is (103 ≤ Ra ≤ 
105) and the working fluid is air with (Pr 
=0.71).  

Figure (3) shows the temperature contour 
as a function of the spacing between the tubes 
(S) for (Ra=103) and axis ratio (ε = 0.1). For 
small spacing (𝑆𝑆 ≤ 0.25) the downstream 
region is occupied by hot fluid at temperature 
same as the wall temperature (red region), this 
is due to that the small spacing between the 
tubes prevents the cold air to flow downstream 
and the air there still hot (overworked fluid). 
As the spacing between the tubes increases (S 
≥ 0.25) the downstream temperature begins to 
decrease and become less than the wall 
temperature and this is clear from the 
appearance of the (orange, yellow and green) 
regions. At some spacing the thermal boundary 
layers from both sides are merged at the 
downstream region (the channel is fitted with 
the convective flow body) , at this spacing the 
heat transfer density becomes maximum and 
the spacing represents the optimal spacing, in 
this case (Sopt = 0.41). Further increasing in 
spacing between the tubes leads to a cold fluid 
region to appear in the downstream as seen in 
the blue region (underworked fluid)  for (S ≥ 
1), this large spacing permits the ambient 
(cold) fluid to flow downstream and leads to 
decrease the heat transfer density since the 

thermal conductance between the tubes 
decreased.  

 

 
Figure (3): Temperature contour with various 
spacing between the tube for (Ra=103, Pr =0.7, 
and axis ratio ε =0.1) 

 
As Rayleigh number increases to (Ra=104) 

same behavior of the temperature contour to 
that of (Ra=103) as can be observed in figure 
(4) except that the optimal spacing here 
becomes smaller, note that (Sopt = 0.41 at 
Ra=103) while (Sopt = 0.22 at Ra=104), so as 
Rayleigh number increases the optimal spacing 
decreases because the thermal boundary layer 
thickness decreases with increasing of 
Rayleigh number, this is also obvious from the 
temperature contour for (Ra=105) in figure (5) 
in which the optimal spacing is (Sopt = 0.12) 
while the optimal spacing for (Ra=104) is 
(0.22).  
 

 
Figure (4): Temperature contour with various 
spacing between the tube for (Ra=104, Pr =0.7, 
and axis ratio ε =0.1) 
 

Figures (6, 7, and 8) illustrate the 
temperature contours at (ε = 0.25) and for 
Rayleigh numbers (103, 104, and 105), 
respectively. The temperature contours are 
similar to that of (ε =0.1) at the same Rayleigh 
number. 

 

766 
 



NJES Vol.20, No.3, 2017                                          Mustafa & Zahi, pp.762-769 
 

 
Figure (5): Temperature contour with various 
spacing between the tube for (Ra=105, Pr =0.7, 
and axis ratio ε =0.1) 

 
Figure (6): Temperature contour with various 
spacing between the tube for (Ra=103, Pr 
=0.7, and axis ratio ε =0.25) 

 
Figure (7): Temperature contour with various 
spacing between the tube for (Ra=104, Pr 
=0.7, and axis ratio ε =0.25) 

 
Figure (8): Temperature contour with various 
spacing between the tube for (Ra=105, Pr 
=0.7, and axis ratio ε =0.25) 

Figures (9, and 10) show the dimensionless 
heat transfer density as a function of the 
spacing at different Rayleigh numbers and for 
(ε =0.1, and 0.25) respectively. These figures 
show that there is optimal spacing for each 
Rayleigh number. At this value of spacing the 
heat transfer density reaches its maximum 
value (tops of the curves).  
 

 
Figure (9): Heat Transfer Density with 
spacing at different Rayleigh numbers for axis 
ratio (ε =0.1) 

 
Figure (10): Heat Transfer Density with 
spacing at different Rayleigh numbers for axis 
ratio (ε =0.25) 
 

Figure (11) shows the optimal spacing 
(Sopt) versus Rayleigh number at various axis 
ratio (ε = 0 ,0.25, and 0.5)), it is interesting to 
note that the optimal spacing decreases as 
Rayleigh number increases for all values of(ε ), 
as mentioned above the increasing of Rayleigh 
number reduces the thermal boundary layer 
thickness and thus the optimal spacing 
decreased.  
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Figure (11): Optimal spacing with Rayleigh 
number for different axis ratios 
 
Figure (12) shows the maximum heat transfer 
density versus Rayleigh number at various axis 
ratio (ε ), it can be noted that  the maximum 
heat transfer density increases as Rayleigh 
number increases for all values of (ε ), the 
increasing of Rayleigh number leads to 
increase the buoyancy force and thus increase 
the maximum heat transfer density. It also can 
be seen that the highest value of the maximum 
heat transfer density occurs at (ε  =0, flat plate) 
and decreases as the axis ratio increases until 
reaches the lowest value at (ε =0.5, circular 
plate). This can be explained as the axis ratio 
increases (the curvature of the surface 
increases) the temperature gradient near the 
wall deceases and thus the maximum heat 
transfer density decreases. 
 

 
Figure (12) Maximum heat transfer density 
with Rayleigh number for different axis ratios. 
 

Figure (13) shows the optimal spacing 
versus the axis ratio of the tube at different 
Rayleigh numbers. The optimal spacing is 
almost constant for all values of the axis ratio. 
Since the optimal spacing is nearly constant for 
all (ε), the number of tubes installed in the 
same volume must be reduced as the axis ratio 
increases. 

 
Figure (13): Optimal spacing with different 
axis ratios for Rayleigh number. 
 
6. Conclusions 

The conclusions for optimal spacing 
between elliptic tubes cooled by natural 
convection can be summarized as:- 
1- The optimal spacing decreases as 

Rayleigh number increases for all axis 
ratios. The maximum heat transfer 
increases as Rayleigh number increases 
for all axis ratios. 

2- The highest value of the maximum heat 
transfer density occurs at axis ratio (ε = 0, 
flat plate) and lowest value occurs at axis 
ratio 
(ε = 0.5, circular plate) for all Rayleigh 
numbers. 

3- The optimal spacing remains constant as 
the axis ratio increases at constant 
Rayleigh number.  

4- The number of tubes installed in the same 
volume must be reduced as the axis ratio 
increases.  
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 البعد الامثل بین انابیب بیضویة مبردة بالحمل الحر باستخدام نظریة التشیید
 

 جعفر احمد زاھي              ید مصطفى           أحمد وح
 قسم الھندسة المیكانیكیةكلیة الھندسة   –جامعة النھرین 

 
 الخلاصة

عددیا. صف من الانابیب البیضویة ثابتة درجة الحرارة نصبت في  درسطبیعي البعد الامثل بین انابیب بیضویة مبردة بالحمل ال
البعد اختیر بیحث تكون كثافة انتقال الحرارة حجم محدد والبعد بینھم اختیر بموجب نظریة التشیید (نظریة بیجان). في ھذة النظریة 

مع شبكة متحدة الموقع استخدمت  SIMPLEرزمیة اقصى ما یمكن. طریقة الحجم المحدد استخدمت لحل المعادلات الحاكمة, خوا
ومائع التشغیل  (ε ≤ 0.5 ≥ 0)للانابیب  ومدى نسبة الاحداثي (Ra ≤ 105 ≥ 103)للربط بین السرعة والضغط. مدى رقم رایلي  

العظمى  ةقال الحرار. بینت النتائج ان البعد الامثل یقل مع زیادة رقم رایلي لكل نسب الاحداثیات وكثافة انت(Pr=0.7)ھو الھواء 
السفلى تحدث صفیحة مستویة) وقیمتھا ,(ε=0 ,وقیمتھا العلیا تحدث عند نسبة احداثي  دة رقم رایلي لكل نسب الاحداثيتزداد مع زیا

 انبوب دائري).بینت النتائج ایضا ان البعد الامثل لا یتغیر مع نسبة الاحداثي عند رقم رایلي ثابت. (ε=0.5 ,عند نسبة احداثي 
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