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Abstract  

DC servo motor is simple in construction 
and control and has many applications. However, 
the uncertainties due to its parameters changes 
such as load torque and friction are an evitable. 
Therefore, a robust controller has to be employed 
for keeping specified requirements irrespective to 
parameter variations. In the present work, two 
sliding mode controllers have been suggested to 
control the speed of DC motor under motor load 
changes; classical and integral sliding mode 
controllers. The integral slide mode control could 
show better tracking characteristics than its 
counterpart and also could compensate the change 
in system parameters. 

 
Keywords: DC Motor, integral sliding control, 
speed control, sliding mode control.  
 
1 Introduction 

Nowadays DC servo systems have huge 
industrial applications ranges from controlling the 
tray of a CD or DVD player, electric vehicles, 
steel rolling mills, electric cranes, robotic 
manipulators, to different home appliances. The 
reason behind such many applications is due to 
precise, wide, simple, and continuous control 
characteristics [1, 2].    A       

Moreover, DC motor has the feature of 
quadrature axes of both torque and flux. This 
would result in high torque to current ratio and 
thus increasing motor efficiency [3, 4].    

It has been shown that sliding mode 
control is an efficient tool for controlling complex 
nonlinear and high-order dynamic plants 
operating under uncertainty conditions, which is a 
challenging problem for most modern control 
strategies. This reveals the high level of 
researches and publication activities in this 
control field and the remitting interest of 
practicing engineers in sliding mode control 
during the last two decades. Automotive systems 
are typical among such applications. They possess 
complicated nonlinearities and are subject to 
significant model uncertainties and external 
disturbances. A variety of automotive control 
applications have benefited greatly from sliding 
mode techniques in terms of control accuracy and 
robustness [5, 6, 7]. 

The key idea of designing VSS control 
algorithms is to enforce sliding mode in certain 

manifold of state space. These manifolds are 
formed by the intersection of hyper-surfaces in 
the state space. As such, an intersection domain 
will arise which is usually called switching 
manifold. As soon as, the system state trajectory 
touches the switching plane, the feedback loop 
structure is adaptively changed such that the 
system state is forced to slide along the switching 
plane. Thereafter, the system response relies on 
switching plane gradient and under what is a so-
called matching condition; the solution would be 
insensitive to variations of system parameters and 
external disturbances [5, 6, 7]. 

The concept of integral sliding mode is an 
extension of classical sliding mode scheme. The 
integral sliding mode focuses on the robustness 
over the entire system response. In this new type 
of sliding mode, the order of the motion equation 
is identical to plant model dimension.. This 
indicates that the sliding mode is established 
without a reaching phase and, starting from the 
initial time instant, the invariance of the system is 
guaranteed against parametric uncertainty and 
external disturbances [8, 9]. 

 
2 Mathematical model of permanent 

magnet DC motor 
The permanent magnet DC motor 

mathematical model can be described in the 
equation below 
�̈�𝜔

= −�
𝑅𝑅𝑎𝑎
𝐿𝐿𝑎𝑎

+
𝑏𝑏
𝐽𝐽
� �̇�𝜔 − �

𝑏𝑏𝑅𝑅𝑎𝑎 + 𝑘𝑘𝑚𝑚𝑘𝑘𝑏𝑏
𝐽𝐽𝐿𝐿𝑎𝑎

�𝜔𝜔 +  
𝑘𝑘𝑚𝑚
𝐽𝐽𝐿𝐿𝑎𝑎

𝑢𝑢

−
𝑅𝑅𝑎𝑎
𝐽𝐽𝐿𝐿𝑎𝑎

𝑑𝑑                                         (1) 

 
where 𝜔𝜔 is the armature angular velocity 

(rad/sec),  𝑅𝑅𝑎𝑎 and 𝐿𝐿𝑎𝑎 are the armature resistance 
(ohm) and inductance (Henry) respectively, b and 
J are damping friction coefficient (N·m·sec/rad) 
and moment of inertia (kg·m2) respectively, km 
and kb are the motor torque and back emf 
constants respectively. U is the armature voltage 
(volts) and d is the external load torque (N·m).   

  Let us define 𝑒𝑒1 = 𝜔𝜔 − 𝜔𝜔𝑑𝑑, 𝑒𝑒2 = �̇�𝜔 − �̇�𝜔𝑑𝑑  
where 𝜔𝜔𝑑𝑑 represent the desired angular velocity 
(rad/sec). Then the system described by Eq.(1) 
can be represented in the state variables as below: 
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 �̇�𝑒1 = 𝑒𝑒2 
�̇�𝑒2 = 𝑎𝑎2𝑒𝑒2 + 𝑎𝑎1𝑒𝑒1 + 𝑏𝑏2𝑢𝑢 + ℎ2𝑑𝑑 − �̈�𝜔𝑑𝑑  (2) 
 
where 

𝑎𝑎2 = −�
𝑅𝑅𝑎𝑎
𝐿𝐿𝑎𝑎

+
𝑏𝑏
𝐽𝐽
� ,  𝑎𝑎1 = −�

𝑏𝑏𝑅𝑅𝑎𝑎 + 𝑘𝑘𝑚𝑚𝑘𝑘𝑏𝑏
𝐽𝐽𝐿𝐿𝑎𝑎

�,  

𝑏𝑏2 =
𝑘𝑘𝑚𝑚
𝐽𝐽𝐿𝐿𝑎𝑎

, ℎ2 = −
𝑅𝑅𝑎𝑎
𝐽𝐽𝐿𝐿𝑎𝑎

 

 
3 Sliding mode controller design for 

speed control 
Assuming that 𝑑𝑑 = 0 and define a surface 

in the state space 
𝑠𝑠 = 𝑒𝑒2 + 𝑐𝑐𝑒𝑒1                                                          (3) 

If a controller 𝑢𝑢 was designed to make the 
system trajectories head to the surface 𝑠𝑠 = 0, then 
Eq. (2) can be written as, 

 
 𝑒𝑒2 + 𝑐𝑐𝑒𝑒1 = 0                                             
 �̇�𝑒1 + 𝑐𝑐𝑒𝑒1 = 0                                         (4) 
 
The time solution for the equation above is 

written as 
𝑒𝑒1(𝑡𝑡) = 𝑒𝑒1(0)𝑒𝑒−𝑐𝑐𝑐𝑐                                 (5) 
 
The equation above shows that if the state 

trajectories are forced to move on surface 𝑠𝑠 = 0, 
then 𝑒𝑒1 will tend to zero exponentially after a 
finite time interval or one can say 

 
𝑒𝑒1(𝑡𝑡 = ∞) = 0 → 𝜔𝜔 = 𝜔𝜔𝑑𝑑                    (6) 
 
Thus, if the state trajectories are forced to 

move on surface  𝑠𝑠 = 0 then the motor will reach 
the desired angular velocity exponentially within 
a specified time interval. 

To ensure that the state trajectories will 
head toward the surface 𝑠𝑠 = 0, the following 
reaching condition should be fulfilled [5,8] 

 
𝑠𝑠�̇�𝑠 < 0                                                (7) 
 �̇�𝑠 = �̇�𝑒2 + 𝑐𝑐�̇�𝑒1 
 𝑠𝑠�̇�𝑠 = 𝑠𝑠 [�̇�𝑒2 + 𝑐𝑐�̇�𝑒1] 
 𝑠𝑠�̇�𝑠 = 𝑠𝑠 [𝑎𝑎2𝑒𝑒2 + 𝑎𝑎1𝑒𝑒1 + 𝑏𝑏2𝑢𝑢 + 𝑐𝑐𝑒𝑒2]     (8) 
 
If one assume that the control defined as a 

discontinuous function for the surface s as below 
 
𝑢𝑢 = −𝑘𝑘 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)                         (9) 
 
Substitute for the control 𝑢𝑢 in Eq. (9) 
 

𝑠𝑠�̇�𝑠 = 𝑠𝑠 [𝑎𝑎2𝑒𝑒2 + 𝑎𝑎1𝑒𝑒1 − 𝑏𝑏2 𝑘𝑘 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) + 𝑐𝑐𝑒𝑒2] 
𝑠𝑠�̇�𝑠 = 𝑠𝑠𝑎𝑎2𝑒𝑒2 + 𝑠𝑠𝑎𝑎1𝑒𝑒1 − 𝑠𝑠𝑏𝑏2𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) + 𝑠𝑠 𝑐𝑐 𝑒𝑒2 

 
Using the fact that 𝑠𝑠 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) = |𝑠𝑠| and 

from the inequality properties (see calculus) that 
𝑎𝑎𝑏𝑏 ≤ |𝑎𝑎||𝑏𝑏| results in the following; 

 

 𝑠𝑠�̇�𝑠 ≤ |𝑠𝑠|[|𝑎𝑎2||𝑒𝑒2| + |𝑎𝑎1||𝑒𝑒1| − 𝑏𝑏2𝑘𝑘 + |𝑐𝑐||𝑒𝑒2|] 
         < 0                                            (10) 
 
Solving for 𝑘𝑘 
 

  𝑘𝑘 >
|𝑎𝑎2||𝑒𝑒2| + |𝑎𝑎1||𝑒𝑒1| + |𝑐𝑐||𝑒𝑒2|

𝑏𝑏2
           (11) 

 
4 Integral sliding mode control for 

disturbance rejection 
Let the DC motor system with the load 

torque be described in the following form 
 
�̇�𝒆 = 𝒇𝒇(𝑒𝑒, 𝑡𝑡) + 𝒈𝒈(𝑒𝑒, 𝑡𝑡) 𝑢𝑢 + 𝒉𝒉 (𝑒𝑒, 𝑡𝑡) 𝑑𝑑     (12) 
 
where 𝑒𝑒 = [𝑒𝑒1 𝑒𝑒2] 
 

  𝒇𝒇 = �𝑓𝑓1𝑓𝑓2
� = �

𝑒𝑒1
𝑎𝑎2𝑒𝑒2 + 𝑎𝑎1𝑒𝑒1 − �̈�𝜔𝑑𝑑

�, 

   𝒈𝒈 = �
𝑠𝑠1
𝑠𝑠2� = �

0
𝑘𝑘𝑚𝑚
𝐽𝐽𝐿𝐿𝑎𝑎
�,  

    𝒉𝒉 = �ℎ1ℎ2
� = �

0

−
𝑅𝑅𝑎𝑎
𝐽𝐽𝐿𝐿𝑎𝑎

�  𝑑𝑑 

Here ℎ(𝑒𝑒, 𝑡𝑡) is the disturbance function 
caused by external load and disturbance torques. 
The main idea of integral sliding mode is to 
design the control law as two parts; a stabilizing 
component which described above and the second 
component is designed to reject the disturbance. 
Taking this assumption into account we can 
rewrite the control law as follows 

  𝑢𝑢 = 𝑢𝑢0 + 𝑢𝑢1                                 (13) 
where 𝑢𝑢0 is designed to make the system 

follows a specified trajectory 𝑒𝑒0 in the state space 
and 𝑢𝑢1 is designed to cancel the disturbance. 
From Eq.(12), Eq.(13) becomes 

 
�̇�𝑒 = 𝑓𝑓(𝑒𝑒, 𝑡𝑡) + 𝑠𝑠(𝑒𝑒, 𝑡𝑡)𝑢𝑢0 + 𝑠𝑠(𝑒𝑒, 𝑡𝑡)𝑢𝑢1 + ℎ(𝑒𝑒, 𝑡𝑡)𝑑𝑑 

                                                          (14) 
Furthermore the surface 𝑠𝑠 can be written in 

the following form [5,8] 
 
 𝑠𝑠 = 𝑠𝑠0 + 𝑧𝑧                                     (15) 
 
where 𝑧𝑧 represents the integral part which 

cancels the disturbance. 
In order to keep the system on the 

specified trajectory 𝑠𝑠0 the time derivative of the 
surface 𝑠𝑠 should equal zero. In other words, the 
system trajectory will not leave the surface 𝑠𝑠0; i.e,  

 
�̇�𝑠 = �̇�𝑠0 + �̇�𝑧 = 0                          (16) 
 
Since,  
 𝑠𝑠0 = 𝑒𝑒2 + 𝑐𝑐𝑒𝑒1 = 𝐶𝐶𝑇𝑇𝑒𝑒 
 
Then,  
    �̇�𝑠0 = �̇�𝑒2 + 𝑐𝑐�̇�𝑒1 = 𝐶𝐶𝑇𝑇�̇�𝑒                     (17)  
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Using Eq.(14), the above equation 
becomes; 

  �̇�𝑠0 = 𝐶𝐶𝑇𝑇[𝑓𝑓(𝑒𝑒, 𝑡𝑡) + 𝑠𝑠(𝑒𝑒, 𝑡𝑡) 𝑢𝑢0 +
𝑠𝑠(𝑒𝑒, 𝑡𝑡) 𝑢𝑢1 +                      ℎ(𝑒𝑒, 𝑡𝑡) 𝑑𝑑]  

 
Accordingly, Eq.(16) can be written as, 
�̇�𝑠 = 𝐶𝐶𝑇𝑇 [𝑓𝑓(𝑒𝑒, 𝑡𝑡) + 𝑠𝑠(𝑒𝑒, 𝑡𝑡) 𝑢𝑢0 +

𝑠𝑠(𝑒𝑒, 𝑡𝑡) 𝑢𝑢1 +               ℎ(𝑒𝑒, 𝑡𝑡)𝑑𝑑 ] + �̇�𝑧 = 0           (18)  
 
In order ensure that 𝑒𝑒(𝑡𝑡) = 𝑒𝑒0(𝑡𝑡) for all 

𝑡𝑡 > 0 the following condition should be fulfilled 
    𝑠𝑠(𝑒𝑒, 𝑡𝑡)  𝑢𝑢1 = ℎ(𝑒𝑒, 𝑡𝑡) 𝑑𝑑 
 
Substitute in �̇�𝑠 we get 
�̇�𝑧 = −𝐶𝐶𝑇𝑇[𝑓𝑓(𝑒𝑒, 𝑡𝑡) + 𝑠𝑠(𝑒𝑒, 𝑡𝑡)𝑢𝑢0]          (19) 
 
Integrating Eq,(19), one can get 

   𝑧𝑧 = −𝐶𝐶𝑇𝑇 � [𝑓𝑓(𝑒𝑒, 𝑡𝑡)
𝑐𝑐

𝑐𝑐0
+ 𝑠𝑠(𝑒𝑒, 𝑡𝑡) 𝑢𝑢0] 𝑑𝑑𝑡𝑡               (20) 

Thus, substitution for 𝑧𝑧 is the surface 
equation 𝑠𝑠 will ensure that the system trajectories 
will remain on the surface 𝑠𝑠 even under external 
disturbances. If 𝑢𝑢1 considered to be a nonlinear 
function  

  𝑢𝑢1 = −𝑘𝑘1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)                            (21) 
 
Then the final control law be rewritten as 

follows 
  𝑢𝑢 = 𝑢𝑢0 + 𝑢𝑢1 
 𝑢𝑢 = −𝑘𝑘0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠0) − 𝑘𝑘1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)         (22) 
 
In what follows a sufficient condition will 

be established. It has been mentioned earlier that 
to have a disturbance rejection then the following 
condition should be fulfilled 

  𝑠𝑠(𝑒𝑒, 𝑡𝑡) 𝑢𝑢1 = ℎ(𝑒𝑒, 𝑡𝑡) 𝑑𝑑                 (23) 
 
Substitute for 𝑢𝑢1 in Eq.(23), we have  
 −𝑠𝑠(𝑒𝑒, 𝑡𝑡) 𝑘𝑘1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑠𝑠) = ℎ(𝑒𝑒, 𝑡𝑡) 𝑑𝑑        (24) 
 
Taking absolute values for the two sides 

yields 
         𝑘𝑘1 ≥ �ℎ(𝑒𝑒,𝑐𝑐)

𝑔𝑔(𝑒𝑒,𝑐𝑐)
𝑑𝑑𝑚𝑚𝑎𝑎𝑚𝑚�                       (25) 

 
5 Simulated Results 

The system and design parameters are 
listed in Table (1).  

Table (1) System and Design Parameters 
Parameter value 

Armature resistance  𝑅𝑅𝑎𝑎 5  Ω 
Armature inductance  𝐿𝐿𝑎𝑎 0.5  H 
Damping coefficient   𝑏𝑏 0.01  N.m.s/rad 

Moment of inertia   𝑱𝑱 0.001 Kg.m2 
Torque constant  𝐾𝐾𝑚𝑚 0.625  N.m/amp 

EMF constant  𝐾𝐾𝑏𝑏 0.001 volt.sec/rad 
𝑘𝑘0 8.1 
𝑘𝑘1 5 

The modeling and simulation of classical 
and integral slide mode has been performed using 
MATLAB/Simulink. The simulation includes 
MATLAB function blocks which be written in m-
code. This class of function would allow 
information from Simulink software to be passed 
into and also provide information to Simulink 
software. The Simulink model for sliding mode 
controller is shown in Fig.(1). The SIMULINK 
modeling of integral sliding mode control of DC 
motor consists of two main function blocks 
entitled "DC motor model" and "Integral sliding 
mode control".  The filter is used to smooth out 
the control signal for measuring the average input 
signal. The function block named current 
estimator is used to give armature current.  

 

 
Figure (1) Simulink Modeling of Sliding Mode 
Controller 
 

Figure (2) shows the behaviors of different 
system variables due to sinusoidal input without 
disturbance. A sinusoidal input of 100 rad/sec. is 
fed as an input to the system. The non-integral 
slide mode controller is used in this scenario. It is 
clear from the results that tracking of input is 
achieved after 4 seconds. Although the controller 
gives good tracking performance, perfect 
coincidence could not be achieved; as there is still 
small error of different values along the speed 
trajectory. The actuating signal of sliding-mode 
controller shows high frequency on-off 
characteristics as shown in Fig.(2.c). The filtered 

687 
 



NJES Vol.20, No.3, 2017                                                            Midhat et al., pp.685-691 
 

version of the actuating signal is depicted in 
Fig.(2.d). The sliding surface and phase plane of 

error 𝑒𝑒1 and change of error 𝑒𝑒2 is illustrated in 
Fig.(2.e) and Fig.(2.f), respectively. 

 
 

  

  

  
Figure (2) Simulation of different system responses due to sinusoidal input without disturbance 

(a) Velocity response (b) Current behavior (c) Non-filtered actuating signal 
(d) Filtered actuating signal sliding surface behavior (f) phase plane of  𝑒𝑒2 − 𝑒𝑒1 

 
The above scenario has been repeated with 

a disturbance of constant amplitude (0.5 N.m) is 
exerted. The system responses due to this 
disturbance are shown in Fig.(3). It is evident 
from the figure there is great degradation in speed 
response and the classical sliding mode controller 
could not compensate such parameter change of 
the system 

Figure (4) shows the different behaviors 
when integral sliding mode strategy is included in 
control instead of classical slide mode control. It 
is clear that for the same disturbance application, 
the speed response shows good characteristics and 
tracking to such disturbance. Therefore, one can 
conclude that the integral slide mode control is 
more robust than classical one. 
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Figure (3) Simulation of different system responses due to sinusoidal input without disturbance 
(a) Velocity response (b) Current behavior (c) Non-filtered actuating signal 
(d) Filtered actuating signal & sliding surface behavior (f) phase plane of  𝑒𝑒2 − 𝑒𝑒1 
 

6 Conclusion 
In this work, the performance of two 

sliding mode control strategies has been assessed 
in terms of their capabilities to reject the applied 
disturbance.  

In spite that the classical sliding mode 
controller shows satisfactory tracking 
performance, as indicated in Fig.(2), the response 
resulting from this controller would degrade due 
to disturbance exertion. As such, the classic 
controller could not compensate the change in 
system parameter as shown in Fig.(3).   

On the other hand, the integral sliding 
mode controller has better disturbance rejection 

capability than its opponent when the same load 
change is applied to DC controlled system. 
However, the price of better disturbance rejection 
capability is the increase in input voltage which 
has to overcome this abrupt load change, as 
illustrated in Fig.(4).    

Thereby, the simulated results have shown 
that the integral sliding control outperforms the 
classical sliding control and gives better transient 
and tracking performance. The integral sliding 
mode control has the ability to reject the 
disturbance and then it is more robust than its 
counter. 
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Figure (4) Simulation of different system responses due to sinusoidal input with disturbance 
(a) Velocity response (b) Current behavior (c) Non-filtered actuating signal  
(d) Filtered actuating signal & sliding surface behavior (f) phase plane of  𝑒𝑒2 − 𝑒𝑒1 
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 مر مؤازرتلمحرك تیار مستصمیم مسیطر انزلاقي تكاملي 
 

 فراس عبد الرزاق رحیم امجد جلیل حمیدي بشار فاتح مدحت
 /بغداد لتكنولوجیةقسم ھندسة السیطرة والنظم/ الجامعة ا

 
 الخلاصة:

لھ تطبیقات عدیدة. مع ذلك، فان ھناك حتمیة في ظھور او وجود یسھولة التركیب والسیطرة ویتمیز المحرك المؤازر 
)(Uncertainties  بسبب تغیر معلماتھ. لذلك یتوجب استخدام مسیطر متین للحفاظ على المتتطلبات المحددة والموصوفة للمنظومة بغض

 المعلمات.   تلك النظر عن تغیر 
لاقي لغرض السیطرة على سرعة المحرك ذو التیار المستمر تحت تاثیر احمال في ھذا البحث تم اقتراح مسیطرین ذات النمط الانز

 مختلفة وھما: المسیطر التقلیدي ذات النمط الانزلاقي وكذلك المسیطر التكاملي ذات النمط الانزلاقي. 
من المسیطر التقلیدي وتمكن خصائص متابعة افضل اداء اعلى واظھرت النتائج بان المسیطر التماملي ذات النمط الانزلاقي اعطى 

 من اجراء التعویض الناتج من تغیر الحاصل في متغیرات المنظمومة بشكل افضل من نظیره.
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