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Abstract

In this paper, the design of a robust controller
for two wheeled inverted pendulum (TWIP) system
is presented. In the first stage of the design, a full
state feedback H, control is designed for stabilizing
the inclination of (TWIP) system to upright position.
The H, controller for the stabilized system is
synthesized in the second stage. The mathematical
model of the system based on the Newtonian
approach is developed. The results verify that the
proposed controller can compensate the system
parameter uncertainty with a more desirable time
response specifications.

Keywords: Two  wheeled inverted
pendulum, H, full state feedback control,
H,, controller, Robust control, Optimal control.

1. Introduction

Inverted pendulum is the subject of several
studies in automatic control as an exemplary
representative of a class of high-order nonlinear and
non-minimum phase systems. In the recent years the
two wheeled inverted pendulum became a very
important system in industry, since it provides a
large degree of flexibility and efficiency with respect
to transportation, inspection, and operation [1].
Several practical systems have been executed
according to TWIP models, such as the JOE, the
Nbot, the Legway, and the Segway etc. Control of
inverted pendulum is very challenging since one
input has to control two variables which are
pendulum angle and system position. The inverted
pendulum system moves in x and y-plane (two
degrees-of-freedom (DOF)), and it is a challenge to
replace the fixed track of the inverted pendulum with
two wheels which add an another degree-of-freedom
(DOF) to allow motion on the plane. Those forms
the two wheeled inverted pendulum system whose
structure is a collection of two systems, a vehicle and
an inverted pendulum. Control of the TWIP system
becomes more complex after adding the heading
angle to be controlled. Thus, for successful control
of the system of two wheeled inverted pendulum,
three variables, namely a pendulum angle, heading
angle and a system position should be controlled
properly by input voltage to push the wheels [2].
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These reasons lead to increase the effort required
towards the control design that ensures stability and
robustness for two wheeled inverted pendulum
system. Accurate model of a system is desired for
controllers design especially if the controllers are
model based controllers [3].

On the other hand, several researches on
modeling and control of the two wheeled inverted
pendulum have been introduced. Euler Lagrange
methods were used in [4], Newton-Euler equations
of motion method was implemented in [5]. Further,
control technologies for controlling the two wheeled
inverted pendulum has been studied. For instance,
Linear Matrix Inequality (LMI) [6], Sliding Mode
Control (SMC)[7], Linear Quadratic Gaussian
(LQG) [1], Linear Quadratic Regulator Controller
(LQR) [8], Adaptive Sliding Mode Control[9],
Fuzzy Control [10] and Neural Network Based
Motion Control [11].

In this work, the two wheeled inverted
pendulum model is developed using Euler equations
of motion. The robust state feedback H, control is
applied to stabilize the system. To compensate the
system parameters variations and to ensure the
tracking, the H,, controller is designed.

2. System Modeling

The system consists of two wheels, chassis,
DC motors, inverted pendulum, and control unit. The
couple of wheels are supported by the chassis and
the inverted pendulum. The wheels of the system are
rotated by the DC motors with respect to the chassis.
The DC motors will be controlled by the control unit
to move the system and stabilize the inverted
pendulum [12]. Figure 1 shows the schematic
diagram of the transformation of the electrical
energy from the DC power supply into the
mechanical energy supplied to the load.

Based on Newton's 2nd law and Kirchhoff's
voltage law the subsequent dominant equations can
be developed as [7, 12]:

JO () = bO(t) = Knyi(£)=T(t) (1)
LED 4 Ri(8) = V(E) - K(t) )

where | is the inertia moment of wheel with
rotor around the wheel axis (Kg.m?), 6(t) is the
rotation angle of the wheel (rad), b is the motor
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viscous friction constant (N.m.sec.\rad), K, is
the back electromotive voltage coefficient (v.sec./
rad), K, is the magnetic torque coefficient (Nm/A),
T(t) is the magnetic torque of the rotor (Nm), L is
the nominal rotor inductance (H), i(t) is the
armature current (4), R is the nominal rotor
resistance (ohm) and V (t) is the motor voltage (v).
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Figure 1: The diagram of DC motor [7].
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Substituting equation (2) in equations (1),
with neglecting the inductance and friction of the
motor yields:

g = Kmy _ KmKe g ©)
R] R]

The torque of motor is:

o(t) (4)

Based on balancing forces and moments on
the wheels, chassis, and inverted pendulum, the
motion equations of (TWIP) are developed [12].
Figure 2 shows the diagram of forces and moments
affecting the (TWIP) system.

Balancing forces and moments acting on the
left wheel are [7]:

M, %(t) = Hp (t) — H, ®)

IwéLW(t) =T, - Hpy ®r (6)

where M, represents the wheel mass with DC
motor (Kg), x(t) represents the wheel position
(m), Hy, (t) represents the friction force between the
left wheel and the ground (N), H, represents the
reaction force between left wheel and the inverted
pendulum (N), I, represents the wheel moment of
inertia with rotor around the wheel axis (Kg.m?),
0, (t) represents the angle of the left wheel (rad),
T, (t) represents the torque on the left wheel (Nm)
and r represents the wheel radius (m). Regarding
the right wheel, the equations are:
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M,,%(t) = Heg(t) — Hp (7)

LB (t) = Tr() — Hep(t) T (8)

where Hyg (t) is the friction force between the
right wheel and the ground (N), Hy is the reaction
force between right wheel and the inverted
pendulum (N), Oy (t) is the angle of the right
wheel (rad) and Tk(t) is the torque acting on the
right wheel (Nm).
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Figure 2: Free body of motion for two wheeled
inverted pendulum [7].

For the inverted pendulum the equations are
[7]:
(H, + Hg) — M,LO(t) cos @ (t) +
M,L@?*(t)cos @ () = M,#(t) (9)
(H, + Hg)cos®(t) + (P, + Pg)sin®@(t) —
M, gsin®(t) — M,LB(t) = M,Li(t) cos @ (t) (10)
(H, + Hg)L cos@(t) +
(P, + PR)L sin@(t) + (T,(t) + To(®) = LB(t)
(11)

where @(t) represents the inverted pendulum
angle (rad), Py, P, represents the reaction force
between left and right wheel and the inverted
pendulum (N), M, represents the pendulum mass
(Kg9), I, represents the inverted pendulum moment
of inertia around the wheel axis (Kg.m?)
and g represents the gravitation acceleration (m/s?).
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The chassis and pendulum equations about
the z-axis is [7]:
8(t) Is = (H, — Hp) 5 (12)

where §(t) represents the rotation angle in y-
axis (rad), Is represents the chassis moment of
inertia with respect to y-axis (Kg.m?) and D
represents the lateral distance between two coaxial
wheels (m).

From equations (1) to (12), the equations of
motion of the (TWIP) system are:

x(t) =

Y—Mp Lr MpLr-y
2K, (—M )V(t)+2KmKe( e )

Y59 (1) (13)

x(t) + 3

B(t) =

Mp L—-ar ar—MpL
2K, (M )V(t)+2KmKe( o )

x(t) + % o(t) (14)
V,() — Vr(®)) (15)

DKy,
Ry

5@ =
where

Ly
B = Lya + 2M,L? (MW + r_2>

21,
o= (Mp +2MW+T_2>
y = (I, + MyL?)

The linearization of equations (13) to (15) can
be done by assuming @(t) =  + 6(t), where 6(t)
is the small angle from the vertical direction. That is
2
cos@ =—1 , sin®=—@ and (Z—?) =0 =02
It is assumed that, the slip between the wheels
and ground is neglected and the wheels always stay
in contact with the ground. That is, there will be no
movement in the z-axis and no rotation about the x-
axis.
The resulting linearized model is:

1 ro0 10 0x®]
)] |0 ap  ag 0f|x(®)|
P(t)|_ 0 o 1 olle®]
3(t) 0 agp (43 0 l@(t)J
0
[P lue
b41
ol
B 0 0 of[x(®)
Y (t)_[o 0 1 o][?(t)J (16)
(t)
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Where:

M,Lr—y
azz = ZKmKe(pRr—zﬁ)
= MjL*g

23 —
B

ar — MpL
Agz = ZKmKe(W)

MplLga
Qg3 = —
y —2Mp Lr
by = ZK’"( RrpB )

b = 2, (25)

The parameters of the (TWIP) are given in
Table 1.

Table 1: System parameters [7].

Parameter Value Unit
r 0.05 m
Mp 1.13 Kg
L, 0.004 Kg.m?
L, 0.001 Kg.m*
L 0.07 m
K, 0.006 N.m/A
R 3 ohm
Mp 0.03 K,
K, 0.007 K,
g 9.81 m/s?

3. Controller Design

In this work two control approaches are
designed to control the two wheeled inverted
pendulum system. The first approach is the full state
feedback H, control which is used to stabilize the
system. The second approach is the H, control
which is designed for achieving the tracking and
robustness for the system.

3.1. Full state feedback H, stabilizing
controller
Consider the full state H, control block
shown in Figure 3 and assume that

A B, B,
M=|c, 0 D, 17)
I 0 0
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w(t) S e(t)

u(t)

y(®)

_I(2 é

Figure 3: A full state feedback H, control [14].

where w(t) represents the external inputs (set
point, disturbance), x(t) is the state vector, y(t) is
output, u(t) is control action and e(t) is the output
to be minimized.

The following assumptions are made [14]:

1-(A, By) and (A, B,) are stabilizable.

2- (Cy,A) is detectable.

The model can be expressed by:

x(t) = Ax(t) + B; d(t) + B, u(t) (18)
where

0 1 0 0 0

_10 az; azs 0 _ _ |b21
A=l o 1 o|BiT0B=[g)

0 asp; ag 0 by,

1 0 0 0
c, = and D;, =0 20
1 [0 0 1 0] 12 (20)

d(t) is the white noise vector .

The H, norm of the system error due to a
white noise input is:
ITeallfi, = E(e" (D)e(t)) (21)

where T, is the transfer function from d(t)
to e(t),then

eT(He(t) =
x(O)TQpx(t) + 2x(O) " Npu(t) + u(t) Ry u(t) (22)
Qf = ClTC1 , Np = ClTDlz :Rf:D12TD12-
Consequently, the cost function to be
minimized is:

J = [T Tx®TQpx(®) + 2x(O)T Npu(t) +

u(®) Ry u(t)]dt (23)
The optimal control action is:
u(t) = —K x(t) (24)
where
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K=R,"(B,"P+ N7 (25)

where P represents the  symmetric and
positive definite transformation matrix and it can be
obtained by the following Riccati equation:

(A—B,R,™NT)'P + P(A-
ByR;™'N;") —PB, R, 7'B,"P + Qf —
Ny RTINS =0 (28

Figure 4 shows the block diagram of the
system with the stabilizing H, controller.

TWIP
i— : x(t)
u® | | k(0 i o
‘f =Ax(t) + B u(t) [ ggg

Figure 4: Block diagram of the system with the
stabilizing H, controller.

3.2. H,, controller synthesis

For robust control, theH., control is
considered one of the most known techniques
available nowadays. It is a method in control theory
for the design of optimal controllers. The H,, control
is characterized an effective method for rejecting
disturbances and noise that appear in the system. It
has proven to be one of the best techniques in linear
control system design. The performance analysis is
defined in terms of sensitivity function S(s),
complementary sensitivity function T(s),and
control sensitivity function KS(s) as in the
following equations [13]:

S(s) = (1 + G(s)K(s))™! @7)
T(s) = G(SK(S)(1 + G(s)K(s) ™" (28)
KS(s) = K(s)(1 + G(s)K(s))~} (29)

By choosing various frequency ranges, the
H, norms can be determined. These ranges for
different optimizations can be indicated as three
different weighting functions, W, (performance),
W, (control) and Wjs(uncertainty) such that the
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infinite norm of the mixed sensitivity functions is
minimized as:
Wi (jw)S(jw)
W,Gw)KS(w)|| <y (30)
Ws(jw)T (jw)

where y is a positive integer number.
If y <1, the robust stability and performance are
achieved. The standard H,, control problem is shown
in Figure 5, where N(s) is the augmented plant
model, the set of input {w(s),u(s)} to the set of
output {e(s), y(s)}. The vector w(s) represents the
exogenous inputs external to the closed loop system,
the vector e(s) is the minimized output vector, u(s)
is the control input, y(s) is the output, and K(s) is
the desired optimal controller [13].

w(t) —>

u(t)

—> et

y(©)

-K,,

Figure 5: Standard H,, Control Problem [13].

Then the system transfer function matrix is
partitioned as [13]:

[6(5)] _ New(s)  Ngy(s) [W(S)
YOI T Ny () Ny ()] Luts)

Where w(s) represents the exogenous inputs
vector, e(s) represents the outputs to be minimized
vector and u(s) represents the control signal.

By substituting the control law, u(s) =
K(s)y(s), into equation (31), the relationship
between the output to be minimized and the external
inputs is obtained as:

e(5) = [New(s) + New (DK (5){I = Ny (DK ()}
Ny ()W (s) = [F(N, K)Iw(s)  (32)

(31)

The H,, optimal control design consists of
finding a stabilizing controller K(s), such that the
H, norm of the closed loop transfer matrix
F;(N,K) is minimized, i.e.

IE(N,K)lle <y (33)

It is important to refer that the design of H,,
controller is done using Matlab environment and
especially using the order (mixsyn). The design of
H,, controller is applied to the plant stabilized by
the full state feedback H, control explained in
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section (3.1). Figure 6 shows the block diagram of
the augmented plant including the stabilized plant
with the weighting functions. It shows that the mixed
sensitivity case is used to design the H,, controller
for achieving a desirable robust performance.

Augmented Plant
| il i |
1 1
L :u(t) : I
Desired ! R K(0) = Ax(©) + By u(®) ! |
Input 1 :
""" ¥(©) = Cx(0) | J
H_, controlier | '
I I ———— H |
1 ! L :
1 ! ! 1
T !
Figure 6: Block diagram of the stabilized system
with H,, controller.
4. Results and Discussion
The considered two wheeled inverted

pendulum system has the following eigenvalues
{0,—0.0056,—11.011,11.012} which means that
the system is unstable because it has a root on the
right hand plane. To stabilize the system a full state
feedback H, controller is applied. Figure 7 shows the
time response specifications of the (TWIP) system
with H, stabilizing controller. It shows that the
controller can stabilize the system within 3 seconds
and the pendulum angle oscillates between —0.201
to 0.065 degree. The resulting state feedback gains
are:

K =[-57.988 — 67.015 — 2310.061 —
207.335] and the new closed loop eigenvalues
are: { —11.050 — 10.969 — 1.125 + 1.025i —
1.125 — 1.025i } which means that the system is
stable. The weighting matrices that are required to
design the controller are selected as:

[119546 0 O 0]
[0 99008 0 0|

= , N =
Qr lo 0o 01950 o|
0 0 0  0.0453
0.9092
0.09545
, Ry = [35.5519].
0.9364
0.7179
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Moreover, the resulting control signal is
within the range of system input voltage.

On the other hand, to achieve the required
robustness for the (TWIP) system in the presence of
system parameter uncertainty, the H,, controller is
designed. The weighting functions are selected

as:
0.0999s"2 +0.99 s + 0.25

Wi(s) = 34
1(5) 0.7006 s"2 + 1.044 s + 2.36 (34)
0.2805 s + 0.1536
Wo(s) = —— 35
2(5) 0.1104 5 +4.194 (3%)
0.103 52 + 0.4988 s + 0.5596
Ws(s) = 0.01155"2 + 0.5047 5 + 1.5 (36)
0.12
0.1
0.08
E 0.06
c
S
F 0.04
o
o
0.02
0
095 2 4 6 8 10
Time (sec.)
@
0.1
0.05
T
5 o0
=
= .0.05
[=2)]
]
e -0.1
=
>
€ -0.15
&
0.2
025 2 4 6 8 10
Time (sec.) (b)
107
25
@
c
k=)
"
B
€
c 0
9]
i 2 4 6 8 10
Time (sec.)
(c)

Figure 7: Time response specifications of the
system with full state feedback H, stabilizing
controller, x, = [0.1 0 0.001 0], a) system position,
b) pendulum angle, c) control signal.
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The H, control minimizes the cost function
in equation (33) using y iteration. The resulting y is
0.9495, that is the robustness condition has been
satisfied. The required position and pendulum angle
are (0.25 m) and (0 °).

The resulting H,, controller is:

s"3+ 53 5%2-0.314 s-105
s"4 +5.406 s"3 +70.395"2 + 61.66 S

K(s) = @37)

Figure 8 shows the time response
specifications of the system with H, stabilizing
controller and H, controller. The obtained time
response specifications are: t, = 10 seconds, t; =
18 seconds and ,Mp = 6.4 % and the pendulum
angle oscillates between 0.0143 to —0.006 degree.
Moreover, to test the robustness of the controlled
system a variation of £10% in system parameters is
considered. It is shown that the designed controller
can compensate the system uncertainty as shown in
Figure 9. It is obvious that a low control action has
been achieved.

5. Conclusion

The design of full state feedback H,
controller for stabilizing the two wheeled inverted
pendulum system has been presented. The H,,
controller was applied to the stabilized system to
achieve a more desirable robust performance. The
results showed that the proposed controller can
effectively stabilize the system and compensate the
variation in system parameters. Moreover, it was
shown that the proposed controller has achieved a
minimum deviation in pendulum angle.
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Figure 8: Time response specifications of the

system using full state feedback H, stabilizing

controller and H,, controller, a) system position, b)

pendulum angle, ¢) control signal.
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Figure 9: Time response specifications of the

uncertain system using full state feedback H,

stabilizing controller and H,, controller, a) system

position, b) pendulum angle, ¢) control signal.
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