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Abstract  

In this paper, the design of a robust controller 
for two wheeled inverted pendulum (TWIP) system 
is presented. In the first stage of the design, a full 
state feedback H2 control is designed for stabilizing 
the inclination of (TWIP) system to upright position. 
The  H∞ controller for the stabilized system is 
synthesized in the second stage. The mathematical 
model of the system based on the Newtonian 
approach is developed. The results verify that the 
proposed controller can compensate the system 
parameter uncertainty with a more desirable time 
response specifications. 

Keywords: Two wheeled inverted 
pendulum, H2 full state feedback control, 
H∞ controller, Robust control, Optimal control. 

 
1. Introduction 

Inverted pendulum is the subject of several 
studies in automatic control as an exemplary 
representative of a class of high-order nonlinear and 
non-minimum phase systems. In the recent years the 
two wheeled inverted pendulum became a very 
important system in industry, since it provides a 
large degree of flexibility and efficiency with respect 
to transportation, inspection, and operation [1]. 
Several practical systems have been executed 
according to TWIP models, such as the JOE, the 
Nbot, the Legway, and the Segway etc. Control of 
inverted pendulum is very challenging since one 
input has to control two variables which are 
pendulum angle and system position. The inverted 
pendulum system moves in 𝑥𝑥 and 𝑦𝑦‐plane (two 
degrees‐of‐freedom (DOF)), and it is a challenge to 
replace the fixed track of the inverted pendulum with 
two wheels which add an another degree‐of‐freedom 
(DOF) to allow motion on the plane. Those forms 
the two wheeled inverted pendulum system whose 
structure is a collection of two systems, a vehicle and 
an inverted pendulum. Control of the TWIP system 
becomes more complex after adding the heading 
angle to be controlled. Thus, for successful control 
of the system of two wheeled inverted pendulum, 
three variables, namely a pendulum angle, heading 
angle and a system position should be controlled 
properly by input voltage to push the wheels [2]. 

These reasons lead to increase the effort required 
towards the control design that ensures stability and 
robustness for two wheeled inverted pendulum 
system. Accurate model of a system is desired for 
controllers design especially if the controllers are 
model based controllers [3].  

On the other hand, several researches on 
modeling and control of the two wheeled inverted 
pendulum have been introduced. Euler Lagrange 
methods were used in [4], Newton-Euler equations 
of motion method was implemented in [5]. Further, 
control technologies for controlling the two wheeled 
inverted pendulum has been studied. For instance, 
Linear Matrix Inequality (LMI) [6], Sliding Mode 
Control (SMC)[7], Linear Quadratic Gaussian 
(LQG) [1], Linear Quadratic Regulator Controller 
(LQR) [8], Adaptive Sliding Mode Control[9], 
Fuzzy Control [10] and Neural Network Based 
Motion Control [11]. 

In this work, the two wheeled inverted 
pendulum model is developed using Euler equations 
of motion. The robust state feedback H2 control is 
applied to stabilize the system. To compensate the 
system parameters variations and to ensure the 
tracking, the H∞ controller is designed.   

 
2. System Modeling  

The system consists of two wheels, chassis, 
DC motors, inverted pendulum, and control unit. The 
couple of wheels are supported by the chassis and 
the inverted pendulum. The wheels of the system are 
rotated by the DC motors with respect to the chassis. 
The DC motors will be controlled by the control unit 
to move the system and stabilize the inverted 
pendulum [12]. Figure 1 shows the schematic 
diagram of the transformation of the electrical 
energy from the DC power supply into the 
mechanical energy supplied to the load. 

Based on Newton's 2nd law and Kirchhoff's 
voltage law the subsequent dominant equations can 
be developed as [7, 12]: 

𝐽𝐽�̈�𝜃(𝑡𝑡) − 𝑏𝑏�̇�𝜃(t) = 𝐾𝐾𝑚𝑚𝑖𝑖(𝑡𝑡)=𝑇𝑇(𝑡𝑡)                 (1) 
𝐿𝐿 𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑡𝑡
+ 𝑅𝑅𝑖𝑖(𝑡𝑡) = 𝑉𝑉(𝑡𝑡) − 𝐾𝐾𝑒𝑒�̇�𝜃(𝑡𝑡)              (2) 

where 𝐽𝐽 is the inertia moment of wheel with 
rotor around the wheel axis (𝐾𝐾𝐾𝐾.𝑚𝑚2), 𝜃𝜃(𝑡𝑡) is the 
rotation angle of the wheel (𝑟𝑟𝑟𝑟𝑟𝑟), 𝑏𝑏 is the motor 
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viscous friction constant (𝑁𝑁.𝑚𝑚. 𝑠𝑠𝑠𝑠𝑠𝑠.\𝑟𝑟𝑟𝑟𝑟𝑟),  𝐾𝐾𝑚𝑚 is 
the back electromotive voltage coefficient (𝑣𝑣. 𝑠𝑠𝑠𝑠𝑠𝑠./
𝑟𝑟𝑟𝑟𝑟𝑟), 𝐾𝐾𝑒𝑒 is the magnetic torque coefficient (𝑁𝑁𝑚𝑚/𝐴𝐴), 
𝑇𝑇(𝑡𝑡) is the magnetic torque of the rotor (𝑁𝑁𝑚𝑚), 𝐿𝐿 is 
the nominal rotor inductance (𝐻𝐻), 𝑖𝑖(𝑡𝑡) is the 
armature current (𝐴𝐴), 𝑅𝑅 is the nominal rotor 
resistance (𝑜𝑜ℎ𝑚𝑚) and 𝑉𝑉(𝑡𝑡) is the motor voltage (𝑣𝑣). 

 

 
 

Figure 1: The diagram of DC motor [7]. 
 
Substituting equation (2) in equations (1), 

with neglecting the inductance and friction of the 
motor yields:   

 
�̈�𝜃 = 𝐾𝐾𝑚𝑚

RJ
𝑉𝑉 − 𝐾𝐾𝑚𝑚𝐾𝐾𝑒𝑒

RJ
�̇�𝜃                                  (3) 

 
The torque of motor is: 
 

𝑇𝑇(𝑡𝑡) =  𝐾𝐾𝑚𝑚𝑉𝑉
(𝑡𝑡)

𝑅𝑅
− 𝐾𝐾𝑚𝑚𝐾𝐾𝑒𝑒

𝑅𝑅
  �̇�𝜃(𝑡𝑡)                      (4) 

 
Based on balancing forces and moments on 

the wheels, chassis, and inverted pendulum, the 
motion equations of (TWIP) are developed [12]. 
Figure 2 shows the diagram of forces and moments 
affecting the (TWIP) system. 

Balancing forces and moments acting on the 
left wheel are [7]: 

𝑀𝑀𝑤𝑤�̈�𝑥(𝑡𝑡) = 𝐻𝐻𝑓𝑓𝑓𝑓(𝑡𝑡) −𝐻𝐻𝑓𝑓                     (5) 
𝐼𝐼𝑤𝑤�̈�𝜃𝑓𝑓𝐿𝐿(𝑡𝑡) =  𝑇𝑇𝑓𝑓(𝑡𝑡) − 𝐻𝐻𝑓𝑓𝑓𝑓(𝑡𝑡)𝑟𝑟            (6) 
 
where 𝑀𝑀𝑤𝑤 represents the wheel mass with DC 

motor (𝐾𝐾𝐾𝐾), 𝑥𝑥(𝑡𝑡) represents the wheel position 
(𝑚𝑚), 𝐻𝐻𝑓𝑓𝑓𝑓(𝑡𝑡) represents the friction force between the 
left wheel and the ground (𝑁𝑁), 𝐻𝐻𝑓𝑓   represents the 
reaction force between left wheel and the inverted 
pendulum (𝑁𝑁), 𝐼𝐼𝑤𝑤  represents the wheel moment of 
inertia with rotor around the wheel axis (𝐾𝐾𝐾𝐾.𝑚𝑚2),  
𝜃𝜃𝑓𝑓𝐿𝐿(𝑡𝑡) represents the angle of the left wheel (𝑟𝑟𝑟𝑟𝑟𝑟), 
𝑇𝑇𝑓𝑓(𝑡𝑡) represents the torque on the left wheel (𝑁𝑁𝑚𝑚) 
and  𝑟𝑟  represents the wheel radius (𝑚𝑚). Regarding 
the right wheel, the equations are: 

𝑀𝑀𝑤𝑤�̈�𝑥(𝑡𝑡) = 𝐻𝐻𝑓𝑓𝑅𝑅(𝑡𝑡) − 𝐻𝐻𝑅𝑅                              (7) 
 

𝐼𝐼𝑤𝑤�̈�𝜃𝑅𝑅𝐿𝐿(𝑡𝑡) =  𝑇𝑇𝑅𝑅(𝑡𝑡) − 𝐻𝐻𝑓𝑓𝑅𝑅(𝑡𝑡) 𝑟𝑟               (8) 
 
where 𝐻𝐻𝑓𝑓𝑅𝑅(𝑡𝑡) is the friction force between the 

right wheel and the ground (𝑁𝑁), HR is the reaction 
force between right wheel and the inverted 
pendulum (𝑁𝑁), 𝜃𝜃𝑅𝑅𝐿𝐿(𝑡𝑡) is the angle of the right 
wheel (𝑟𝑟𝑟𝑟𝑟𝑟) and 𝑇𝑇𝑅𝑅(𝑡𝑡) is the torque acting on the 
right wheel (𝑁𝑁𝑚𝑚). 

 

 

Figure 2: Free body of motion for two wheeled 
inverted pendulum [7]. 

For the inverted pendulum the equations are 
[7]: 

 (𝐻𝐻𝑓𝑓 + 𝐻𝐻𝑅𝑅) −𝑀𝑀𝑝𝑝𝐿𝐿∅̈(𝑡𝑡) cos∅ (t) +
  𝑀𝑀𝑝𝑝𝐿𝐿∅̇2(𝑡𝑡) cos∅ (t) =   𝑀𝑀𝑝𝑝�̈�𝑥(𝑡𝑡)                     (9)  

(𝐻𝐻𝑓𝑓 + 𝐻𝐻𝑅𝑅)𝑠𝑠𝑜𝑜𝑠𝑠∅(𝑡𝑡) + (𝑃𝑃𝑓𝑓 + 𝑃𝑃𝑅𝑅)𝑠𝑠𝑖𝑖𝑖𝑖∅(𝑡𝑡) −
𝑀𝑀𝑝𝑝𝐾𝐾𝑠𝑠𝑖𝑖𝑖𝑖∅(𝑡𝑡) −𝑀𝑀𝑝𝑝𝐿𝐿∅̈(𝑡𝑡) = 𝑀𝑀𝑝𝑝𝐿𝐿�̈�𝑥(𝑡𝑡) cos∅ (𝑡𝑡)   (10) 

 (𝐻𝐻𝑓𝑓 + 𝐻𝐻𝑅𝑅)𝐿𝐿 𝑠𝑠𝑜𝑜𝑠𝑠∅(𝑡𝑡) +
(𝑃𝑃𝑓𝑓 + 𝑃𝑃𝑅𝑅)𝐿𝐿 𝑠𝑠𝑖𝑖𝑖𝑖∅(𝑡𝑡) + (𝑇𝑇𝑓𝑓(𝑡𝑡) + 𝑇𝑇𝑅𝑅(𝑡𝑡)) = 𝐼𝐼𝑝𝑝∅̈(𝑡𝑡)       

           (11) 
 
where ∅(𝑡𝑡) represents the inverted pendulum 

angle (𝑟𝑟𝑟𝑟𝑟𝑟), PR, PL represents the reaction force 
between left and right wheel and the inverted 
pendulum (𝑁𝑁), 𝑀𝑀𝑝𝑝 represents the pendulum mass 
(𝐾𝐾𝐾𝐾), 𝐼𝐼𝑝𝑝 represents the inverted pendulum moment 
of inertia around the wheel axis (𝐾𝐾𝐾𝐾.𝑚𝑚2) 
and 𝐾𝐾 represents the gravitation acceleration (𝑚𝑚/𝑠𝑠2). 

 

𝑠𝑠 = 𝐾𝐾𝑒𝑒 �̇�𝜃 

563 
 



NJES Vol.20, No.3, 2017                                                 Ali & Shareef, pp.562-569 
 

The chassis and pendulum equations about 
the 𝑧𝑧-axis is [7]: 

�̈�𝛿(𝑡𝑡) 𝐼𝐼𝛿𝛿 = (𝐻𝐻𝑓𝑓 − 𝐻𝐻𝑅𝑅) 𝐷𝐷
2
                     (12) 

 
where 𝛿𝛿(𝑡𝑡) represents the rotation angle in 𝑦𝑦-

axis (𝑟𝑟𝑟𝑟𝑟𝑟), 𝐼𝐼𝛿𝛿  represents the chassis moment of 
inertia with respect to 𝑦𝑦-axis (Kg.𝑚𝑚2) and 𝐷𝐷 
represents the lateral distance between two coaxial 
wheels (𝑚𝑚). 

From equations (1) to (12), the equations of 
motion of the (TWIP) system are: 

 �̈�𝑥(𝑡𝑡) =

2𝐾𝐾𝑚𝑚 �𝛾𝛾−𝑀𝑀𝑝𝑝 𝑓𝑓𝐿𝐿 
𝑅𝑅𝐿𝐿𝑅𝑅

�𝑉𝑉(𝑡𝑡) + 2𝐾𝐾𝑚𝑚𝐾𝐾𝑒𝑒 �
MpL 𝐿𝐿−𝛾𝛾
𝑅𝑅𝐿𝐿2𝑅𝑅

�    

              �̇�𝑥(𝑡𝑡) +  𝑀𝑀𝑝𝑝
2𝑓𝑓2𝑔𝑔
𝑅𝑅

∅(𝑡𝑡)              (13) 

∅̈(𝑡𝑡) =

2𝐾𝐾𝑚𝑚 �𝑀𝑀𝑝𝑝 𝑓𝑓−𝛼𝛼𝐿𝐿 
𝑅𝑅𝐿𝐿𝑅𝑅

�𝑉𝑉(𝑡𝑡) + 2𝐾𝐾𝑚𝑚𝐾𝐾𝑒𝑒 �
𝛼𝛼𝐿𝐿−MpL 
𝑅𝑅𝑅𝑅𝐿𝐿2

�  

            �̇�𝑥(𝑡𝑡) + 𝑀𝑀𝑝𝑝 𝑓𝑓 𝑔𝑔𝛼𝛼
𝑅𝑅

∅(𝑡𝑡)                      (14) 

�̈�𝛿(𝑡𝑡) = 𝐷𝐷𝐿𝐿𝐾𝐾𝑚𝑚 
𝑅𝑅𝑅𝑅

 (𝑉𝑉𝑓𝑓(𝑡𝑡) − 𝑉𝑉𝑅𝑅(𝑡𝑡))                  (15) 
where 

β = 𝐼𝐼𝑝𝑝𝛼𝛼 + 2𝑀𝑀𝑝𝑝𝐿𝐿2 �𝑀𝑀𝑤𝑤 +
𝐼𝐼𝑤𝑤
𝑟𝑟2
�  

α = �𝑀𝑀𝑝𝑝 + 2𝑀𝑀𝑤𝑤 +
2𝐼𝐼𝑤𝑤
𝑟𝑟2

�  

𝛾𝛾 = �I𝑝𝑝 + 𝑀𝑀𝑝𝑝𝐿𝐿2� 
 
The linearization of equations (13) to (15) can 

be done by assuming ∅(𝑡𝑡) = 𝜋𝜋 + 𝜃𝜃(𝑡𝑡), where 𝜃𝜃(𝑡𝑡) 
is the small angle from the vertical direction. That is  

𝑠𝑠𝑜𝑜𝑠𝑠∅ = −1   ,     sin∅ = −∅  and  �𝑑𝑑∅
𝑑𝑑𝑡𝑡
�
2

= 0 = ∅̇2. 
It is assumed that, the slip between the wheels 

and ground is neglected and the wheels always stay 
in contact with the ground. That is, there will be no 
movement in the 𝑧𝑧-axis and no rotation about the 𝑥𝑥-
axis. 

The resulting linearized model is:  

⎣
⎢
⎢
⎢
⎡�̇�𝑥

(𝑡𝑡)
�̈�𝑥(𝑡𝑡)
∅̇(𝑡𝑡)
∅̈(𝑡𝑡)⎦

⎥
⎥
⎥
⎤

= �

0                1         0          0
0        𝑟𝑟22         𝑟𝑟23          0
0                0         1          0
0        𝑟𝑟42         𝑟𝑟43          0

�

⎣
⎢
⎢
⎡𝑥𝑥

(𝑡𝑡)
�̇�𝑥(𝑡𝑡)
∅(𝑡𝑡)
∅̇(𝑡𝑡)⎦

⎥
⎥
⎤

+ �

0
𝑏𝑏21
0
𝑏𝑏41

� u(t) 

𝑦𝑦(𝑡𝑡) = �
1           0          0          0
0           0          1          0

�

⎣
⎢
⎢
⎡
𝑥𝑥(𝑡𝑡)
�̇�𝑥(𝑡𝑡)
∅(𝑡𝑡)
∅̇(𝑡𝑡)⎦

⎥
⎥
⎤
    (16) 

 

Where: 

𝑟𝑟22 = 2𝐾𝐾𝑚𝑚𝐾𝐾𝑒𝑒(
MpL 𝑟𝑟 − 𝛾𝛾
𝑅𝑅𝑟𝑟2𝛽𝛽

) 

𝑟𝑟23 =
𝑀𝑀𝑝𝑝

2𝐿𝐿2𝐾𝐾
𝛽𝛽

 

𝑟𝑟42 = 2𝐾𝐾𝑚𝑚𝐾𝐾𝑒𝑒(
𝛼𝛼𝑟𝑟 − MpL 
𝛽𝛽𝑅𝑅𝑟𝑟2

) 

𝑟𝑟43 =
𝑀𝑀𝑀𝑀 𝐿𝐿 𝐾𝐾𝛼𝛼

𝛽𝛽
 

𝑏𝑏21 = 2𝐾𝐾𝑚𝑚 �
𝛾𝛾 − 2𝑀𝑀𝑀𝑀 𝐿𝐿𝑟𝑟 

𝑅𝑅𝑟𝑟𝛽𝛽
� 

𝑏𝑏41 = 2𝐾𝐾𝑚𝑚 �
𝑀𝑀𝑝𝑝 𝑓𝑓−𝛼𝛼𝐿𝐿 

𝑅𝑅𝐿𝐿𝑅𝑅
� 

 
The parameters of the (TWIP) are given in 

Table 1. 
 
Table 1: System parameters [7]. 
 

Parameter Value Unit 
𝑟𝑟 0.05 𝑚𝑚 
𝑀𝑀𝑀𝑀 1.13 𝐾𝐾𝐾𝐾 
𝐼𝐼𝑝𝑝 0.004 𝐾𝐾𝐾𝐾.𝑚𝑚2 
𝐼𝐼𝑤𝑤 0.001 𝐾𝐾𝐾𝐾.𝑚𝑚2 
𝐿𝐿 0.07 𝑚𝑚 
𝐾𝐾𝑚𝑚 0.006 𝑁𝑁.𝑚𝑚/𝐴𝐴 
𝑅𝑅 3 𝑜𝑜ℎ𝑚𝑚 
𝑀𝑀𝑀𝑀 0.03 𝐾𝐾𝑔𝑔 
𝐾𝐾𝑒𝑒 0.007 𝐾𝐾𝑔𝑔 
𝐾𝐾 9.81 𝑚𝑚/𝑠𝑠2 
 

3. Controller Design   
In this work two control approaches are 

designed to control the two wheeled inverted 
pendulum system. The first approach is the full state 
feedback H2 control which is used to stabilize the 
system. The second approach is the H∞ control 
which is designed for achieving the tracking and 
robustness for the system. 

 
3.1. Full state feedback 𝐇𝐇𝟐𝟐 stabilizing 

controller 
Consider the full state H2 control block 

shown in Figure 3 and assume that 

  𝑀𝑀 = �
𝐴𝐴 𝐵𝐵1 𝐵𝐵2
𝐶𝐶1 0 𝐷𝐷12
𝐼𝐼 0 0

�                     (17) 
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Figure 3: A full state feedback H2 control [14]. 
 
where 𝑤𝑤(𝑡𝑡) represents the external inputs (set 

point, disturbance), 𝑥𝑥(𝑡𝑡) is the state vector, 𝑦𝑦(𝑡𝑡) is 
output, 𝑢𝑢(𝑡𝑡) is control action and 𝑠𝑠(𝑡𝑡) is the output 
to be minimized. 

The following assumptions are made [14]: 
1-(A,𝐵𝐵1) and (A,𝐵𝐵2) are stabilizable.  
2- (𝐶𝐶1, A) is detectable.  
The model can be expressed by: 

�̇�𝑥(𝑡𝑡) = 𝐴𝐴𝑥𝑥(𝑡𝑡) + 𝐵𝐵1 𝑟𝑟(𝑡𝑡) + 𝐵𝐵2 𝑢𝑢(𝑡𝑡)                (18) 
𝑠𝑠(𝑡𝑡) = 𝐶𝐶1𝑥𝑥(𝑡𝑡) + 𝐷𝐷12 𝑢𝑢(𝑡𝑡)                               (19) 

 
where 

𝐴𝐴 = �

0           1         0          0
0        𝑟𝑟22       𝑟𝑟23       0
0          0            1        0
0       𝑟𝑟42       𝑟𝑟43        0

� ,𝐵𝐵1 = 0,  𝐵𝐵2 = �

0
𝑏𝑏21
0
𝑏𝑏41

�,  

𝐶𝐶1 = �
1      0        0      0
0      0        1      0

� 𝑟𝑟𝑖𝑖𝑟𝑟 𝐷𝐷12 = 0       (20) 

 
𝑟𝑟(𝑡𝑡) is the white noise vector . 
 
The H2 norm of the system error due to a 

white noise input is:  
‖𝑇𝑇𝑒𝑒𝑑𝑑‖𝐻𝐻2

2 = 𝐸𝐸(𝑠𝑠𝑇𝑇(𝑡𝑡)𝑠𝑠(𝑡𝑡))                         (21) 
 
where 𝑇𝑇𝑒𝑒𝑑𝑑  is the transfer function from 𝑟𝑟(𝑡𝑡) 

to 𝑠𝑠(𝑡𝑡),then  
 
𝑠𝑠𝑇𝑇(𝑡𝑡)𝑠𝑠(𝑡𝑡) =

𝑥𝑥(𝑡𝑡)𝑇𝑇𝑄𝑄𝑓𝑓𝑥𝑥(𝑡𝑡) + 2𝑥𝑥(𝑡𝑡)𝑇𝑇𝑁𝑁𝑓𝑓𝑢𝑢(𝑡𝑡) + 𝑢𝑢(𝑡𝑡)𝑇𝑇𝑅𝑅𝑓𝑓 𝑢𝑢(𝑡𝑡)   (22) 
𝑄𝑄𝑓𝑓 = 𝐶𝐶1𝑇𝑇𝐶𝐶1 ,  𝑁𝑁𝑓𝑓 = 𝐶𝐶1𝑇𝑇𝐷𝐷12 , 𝑅𝑅𝑓𝑓=𝐷𝐷12𝑇𝑇𝐷𝐷12. 
Consequently, the cost function to be 

minimized is:   
 
𝐽𝐽 = ∫ [𝑡𝑡𝑓𝑓

𝑡𝑡0
𝑥𝑥(𝑡𝑡)𝑇𝑇𝑄𝑄𝑓𝑓𝑥𝑥(𝑡𝑡) + 2𝑥𝑥(𝑡𝑡)𝑇𝑇𝑁𝑁𝑓𝑓𝑢𝑢(𝑡𝑡) +

𝑢𝑢(𝑡𝑡)𝑇𝑇𝑅𝑅𝑓𝑓 𝑢𝑢(𝑡𝑡)]𝑟𝑟𝑡𝑡                                                   (23) 
 
The optimal control action is: 

𝑢𝑢(𝑡𝑡) = −𝐾𝐾 𝑥𝑥(𝑡𝑡)                          (24) 
where 

𝐾𝐾 = 𝑅𝑅𝑓𝑓−1(𝐵𝐵1𝑇𝑇𝑃𝑃 +  𝑁𝑁𝑓𝑓𝑇𝑇)                        (25) 
 
where 𝑃𝑃 represents the symmetric and 

positive definite transformation matrix and it can be 
obtained by the following Riccati equation:        

 �𝐴𝐴 − 𝐵𝐵2𝑅𝑅𝑓𝑓−1 𝑁𝑁𝑓𝑓𝑇𝑇�
𝑇𝑇𝑃𝑃 +  𝑃𝑃(𝐴𝐴 −

𝐵𝐵2𝑅𝑅𝑓𝑓−1 𝑁𝑁𝑓𝑓𝑇𝑇)  − 𝑃𝑃𝐵𝐵2 𝑅𝑅𝑓𝑓−1𝐵𝐵1𝑇𝑇𝑃𝑃 +  𝑄𝑄𝑓𝑓 −
𝑁𝑁𝑓𝑓 𝑅𝑅𝑓𝑓−1𝑁𝑁𝑓𝑓𝑇𝑇 = 0                    (26)   

Figure 4 shows the block diagram of the 
system with the stabilizing  H2 controller.   

 

 
Figure 4: Block diagram of the system with the 
stabilizing  H2 controller. 
 
3.2.  𝐇𝐇∞ controller synthesis 

For robust control, the H∞ control is 
considered one of the most known techniques 
available nowadays.  It is a method in control theory 
for the design of optimal controllers. The H∞ control 
is characterized an effective method for rejecting 
disturbances and noise that appear in the system.  It 
has proven to be one of the best techniques in linear 
control system design. The performance analysis is 
defined in terms of sensitivity function 𝑆𝑆(𝑠𝑠), 
complementary sensitivity function             𝑇𝑇(𝑠𝑠), and 
control sensitivity function 𝐾𝐾𝑆𝑆(𝑠𝑠)  as in the 
following equations [13]: 

𝑆𝑆(𝑠𝑠) = (1 + 𝐺𝐺(𝑠𝑠)𝐾𝐾(𝑠𝑠))−1                     (27) 
𝑇𝑇(𝑠𝑠) = 𝐺𝐺(𝑠𝑠)𝐾𝐾(𝑠𝑠)(1 + 𝐺𝐺(𝑠𝑠)𝐾𝐾(𝑠𝑠))−1         (28) 
𝐾𝐾𝑆𝑆(𝑠𝑠) = 𝐾𝐾(𝑠𝑠)(1 + 𝐺𝐺(𝑠𝑠)𝐾𝐾(𝑠𝑠))−1            (29) 

 
By choosing various frequency ranges, the 

H∞ norms can be determined. These ranges for 
different optimizations can be indicated as three 
different weighting functions, 𝑊𝑊1 (performance), 
𝑊𝑊2(control) and 𝑊𝑊3(uncertainty) such that the 

 

 

   𝑴𝑴 < 

𝒚𝒚(𝒕𝒕) 

 −𝑲𝑲𝟐𝟐           

𝒘𝒘(𝒕𝒕) 

𝒖𝒖(𝒕𝒕) 
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�̇�𝒙(𝒕𝒕)  
∅(𝒕𝒕)  
∅̇(𝒕𝒕)  

 TWIP 

𝒖𝒖(𝒕𝒕) 

 𝐇𝐇𝟐𝟐 
 

�̇�𝒙(𝒕𝒕)
= 𝑨𝑨𝒙𝒙(𝒕𝒕) + 𝑩𝑩𝟐𝟐 𝒖𝒖(𝒕𝒕) 

 −𝑲𝑲            

565 
 



NJES Vol.20, No.3, 2017                                                 Ali & Shareef, pp.562-569 
 

infinite norm of the mixed sensitivity functions is 
minimized as: 

�
 𝑊𝑊1(𝑗𝑗𝑤𝑤)𝑆𝑆(𝑗𝑗𝑤𝑤)   
  𝑊𝑊2(𝑗𝑗𝑤𝑤)𝐾𝐾𝑆𝑆(𝑗𝑗𝑤𝑤)
𝑊𝑊3(𝑗𝑗𝑤𝑤)𝑇𝑇(𝑗𝑗𝑤𝑤)

�

∞

< 𝛾𝛾                        (30)   

 
where 𝛾𝛾 is a positive integer number. 

If  𝛾𝛾 ≤ 1, the robust stability and performance are 
achieved. The standard H∞ control problem is shown 
in Figure 5, where 𝑁𝑁(𝑠𝑠) is the augmented plant 
model, the set of input {𝑤𝑤(𝑠𝑠),𝑢𝑢(𝑠𝑠)} to the set of 
output {𝑠𝑠(𝑠𝑠),𝑦𝑦(𝑠𝑠)}. The vector  𝑤𝑤(𝑠𝑠) represents the 
exogenous inputs external to the closed loop system, 
the vector 𝑠𝑠(𝑠𝑠) is the minimized output vector, 𝑢𝑢(𝑠𝑠) 
is the control input, 𝑦𝑦(𝑠𝑠) is the output, and 𝐾𝐾(𝑠𝑠) is 
the desired optimal controller [13]. 

 

 
Figure 5:  Standard H∞ Control Problem [13]. 

 
Then the system transfer function matrix is 

partitioned as [13]: 

�𝑠𝑠
(𝑠𝑠)
𝑦𝑦(𝑠𝑠)� = �

𝑁𝑁𝑒𝑒𝑤𝑤(𝑠𝑠) 𝑁𝑁𝑒𝑒𝑒𝑒(𝑠𝑠)
𝑁𝑁𝑦𝑦𝑤𝑤(𝑠𝑠) 𝑁𝑁𝑦𝑦𝑒𝑒(𝑠𝑠)� �

𝑤𝑤(𝑠𝑠)
𝑢𝑢(𝑠𝑠)�         (31) 

Where 𝑤𝑤(𝑠𝑠) represents the exogenous inputs 
vector, 𝑠𝑠(𝑠𝑠) represents the outputs to be minimized 
vector and 𝑢𝑢(𝑠𝑠) represents the control signal. 

By substituting the control law, 𝑢𝑢(𝑠𝑠)  =
 𝐾𝐾(𝑠𝑠)𝑦𝑦(𝑠𝑠), into equation (31), the relationship 
between the output to be minimized and the external 
inputs is obtained as: 
𝑠𝑠(𝑠𝑠) = [𝑁𝑁𝑒𝑒𝑤𝑤(𝑠𝑠) + 𝑁𝑁𝑒𝑒𝑒𝑒(𝑠𝑠)𝐾𝐾(𝑠𝑠)�𝐼𝐼 − 𝑁𝑁𝑦𝑦𝑒𝑒(𝑠𝑠)𝐾𝐾(𝑠𝑠)�−1 

𝑁𝑁𝑦𝑦𝑤𝑤(𝑠𝑠)]𝑤𝑤(𝑠𝑠) = [𝐹𝐹𝑙𝑙(𝑁𝑁,𝐾𝐾)]𝑤𝑤(𝑠𝑠)          (32) 
 
The H∞ optimal control design consists of 

finding a stabilizing controller 𝐾𝐾(𝑠𝑠), such that the 
H∞ norm of the closed loop transfer matrix 
𝐹𝐹𝑙𝑙(𝑁𝑁,𝐾𝐾) is minimized, i.e.    

‖𝐹𝐹𝑙𝑙(𝑁𝑁,𝐾𝐾)‖∞ < 𝛾𝛾       (33) 
It is important to refer that the design of H∞ 

controller is done using Matlab environment and 
especially using the order (mixsyn). The design of 
 H∞ controller is applied to the plant stabilized by 
the full state feedback H2 control explained in 

section (3.1). Figure 6 shows the block diagram of 
the augmented plant including the stabilized plant 
with the weighting functions. It shows that the mixed 
sensitivity case is used to design the H∞ controller 
for achieving a desirable robust performance.   

 
Figure 6: Block diagram of the stabilized system 

with H∞ controller. 
 

4. Results and Discussion  
The considered two wheeled inverted 

pendulum system has the following eigenvalues 
{0,−0.0056,−11.011, 11.012} which means that 
the system is unstable because it has a root on the 
right hand plane. To stabilize the system a full state 
feedback H2 controller is applied. Figure 7 shows the 
time response specifications of the (TWIP) system 
with H2 stabilizing controller. It shows that the 
controller can stabilize the system within 3 𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑖𝑖𝑟𝑟𝑠𝑠 
and the pendulum angle oscillates between −0.201  
to 0.065 degree. The resulting state feedback gains 
are:  

𝐾𝐾 = [−57.988 − 67.015 − 2310.061 −
207.335] and the new closed loop eigenvalues 
are: { −11.050 − 10.969 − 1.125 +  1.025𝑖𝑖   −
1.125 −  1.025𝑖𝑖 } which means that the system is 
stable. The weighting matrices that are required to 
design the controller are selected as:  

𝑄𝑄𝑓𝑓 =

⎣
⎢
⎢
⎡119546    0         0           0

0    9900.8         0           0
0        0        0.1950          0
0        0        0          0.0453⎦

⎥
⎥
⎤

, 𝑁𝑁𝑓𝑓 =

            �

0.9092
0.09545
0.9364
0.7179

� , 𝑅𝑅𝑓𝑓 = [35.5519]. 
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Moreover, the resulting control signal is 
within the range of system input voltage. 

On the other hand, to achieve the required 
robustness for the (TWIP) system in the presence of 
system parameter uncertainty, the H∞ controller is 
designed. The weighting functions are selected by 
trial and error as: 

𝑊𝑊1(𝑠𝑠) =  0.0999 𝑠𝑠^2 + 0.99 𝑠𝑠 + 0.25
 0.7006 𝑠𝑠^2 + 1.044 𝑠𝑠 + 2.36

                    (34) 

𝑊𝑊2(𝑠𝑠) =   0.2805 𝑠𝑠 + 0.1536
0.1104 𝑠𝑠 + 4.194

                           (35) 

𝑊𝑊3(𝑠𝑠) =  0.103 𝑠𝑠^2 + 0.4988 𝑠𝑠 + 0.5596
0.0115 𝑠𝑠^2 + 0.5047 𝑠𝑠 + 1.5

              (36) 

(a) 

(b) 

(c) 
 
Figure 7: Time response specifications of the 
system with full state feedback H2 stabilizing 
controller, 𝑥𝑥0 = [0.1 0 0.001 0], a) system position, 
b) pendulum angle, c) control signal. 

The H∞ control minimizes the cost function 
in equation (33) using 𝛾𝛾 iteration. The resulting 𝛾𝛾 is 
0.9495, that is the robustness condition has been 
satisfied. The required position and pendulum angle 
are (0.25 m) and (0 ο).  

The resulting H∞ controller is: 
 

𝐾𝐾(𝑠𝑠) = 𝑠𝑠^3+ 53 𝑠𝑠^2−0.314 𝑠𝑠−105
𝑠𝑠^4 + 5.406 𝑠𝑠^3 + 70.39 𝑠𝑠^2 + 61.66 𝑠𝑠

      (37) 
 
Figure 8 shows the time response 

specifications of the system with H2 stabilizing 
controller and H∞ controller. The obtained time 
response specifications are:   𝑡𝑡𝐿𝐿 = 10 𝑠𝑠𝑠𝑠𝑠𝑠onds, 𝑡𝑡𝑠𝑠 =
18 𝑠𝑠𝑠𝑠𝑠𝑠onds and ,𝑀𝑀𝑃𝑃 = 6.4 % and the pendulum 
angle oscillates between 0.0143 to −0.006 degree. 
Moreover, to test the robustness of the controlled 
system a variation of ±10% in system parameters is 
considered. It is shown that the designed controller 
can compensate the system uncertainty as shown in 
Figure 9. It is obvious that a low control action has 
been achieved. 

 
5. Conclusion  

      The design of full state feedback H2 
controller for stabilizing the two wheeled inverted 
pendulum system has been presented. The H∞ 
controller was applied to the stabilized system to 
achieve a more desirable robust performance. The 
results showed that the proposed controller can 
effectively stabilize the system and compensate the 
variation in system parameters. Moreover, it was 
shown that the proposed controller has achieved a 
minimum deviation in pendulum angle.  
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(b) 
 

(c) 
Figure 8: Time response specifications of the 
system using full state feedback H2 stabilizing 
controller and H∞ controller, a) system position, b) 
pendulum angle, c) control signal. 

(a) 

(b) 

(c) 
Figure 9: Time response specifications of the 
uncertain system using full state feedback H2 
stabilizing controller and H∞ controller, a) system 
position, b) pendulum angle, c) control signal. 
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 ذي عجلتینتصمیم مسیطر رصین لنظام بندول مقلوب 

 
 زین العابدین محمد شریف اھیم علي                              ا.م.د. حازم ابر

 قسم ھندسة السیطرة والنظم                           قسم ھندسة السیطرة والنظم
 الجامعة التكنولوجیة                                    الجامعة التكنولوجیة

 بغداد –العراق              بغداد                              –العراق 
 

 الخلاصة 
ذو تغذیة رجعیة لكل  مسیطرتم تصمیم  . في المرحلة الاولىذي عجلتینیطر رصین لنظام بندول مقلوب مستصمیم  ، تم البحث في ھذا

ال   في المرحلة الثانیة تم تصمیم مسیطر .وديمیل نظام البندول المقلوب عن الوضع العماستقراریة  من اجل  H2ال متغیرات النظام باستخدام طریقة 
H∞ التغییرات التي تحدث   بامكانة تعویض المسیطر المقترح نا تبین النتائجتم اعتماد النموذج الریاضي للنظام والممثل بطریقة نیوتن.  .للنظام المستقر

 في معاملات النظام وبمواصفات استجابة زمنیة مرغوب فیھا.
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