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Abstract: 
     Electromechanical systems (EMS) may be 

considered as devices transforming electrical into 

mechanical energy. Every system that belongs to 

the electromechanical class can be decomposed in 

an electrical (ES) and a mechanical subsystem 

(MS). The motion control systems can be quite 

complicated because many different factors have 

to be considered in the design of 

electromechanical systems. These factors can be 

summarized as the nonlinearity, non-smoothness 

in its model, the uncertainty in system model 

parameters and non-satisfying matching 

condition.  

In this paper a new sliding mode control 

design approach for the EMS is proposed without 

neglecting the inductance in the electrical part or 

approximating the non-smooth perturbation. The 

first step in the proposed controller design 

consists of transforming the ES to a low pass filter 

(LPF) and then (the second step) designing a 

sliding mode controller (SMC) to the MS that will 

reject system model uncertainty and the effect of 

non-smooth disturbances. With a suitable selected 

LPF time constant, the SMC which controls the 

MS is nearly the equivalent control and as a result 

the chattering is attenuated greater than that in the 

case of classical SMC which designed by ignoring 

the electrical subsystem and also with a smaller 

control effort.  The simulation results, of applying 

the proposed sliding mode control to an 

electromechanical system, show its superiority 

compared with classical SMC designed in two 

effective SMC features beside forcing the state to 

follow the desired position where chattering 

amplitude is greatly reduced with a significant 

reduction in control action value (approximately 

equal to third the required input voltage with the 

classical SMC). 
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1. Introduction: 
     Electromechanical systems may be considered 

as devices transforming electrical into mechanical 

energy. They establish a very important class of  

 

 

industrial components often found in current 

practical applications defining the ideal link 

between computer-based drivers and movement 

generators systems. From the control point of 

view their structure is quite interesting since they 

belong to the class of the so-called under actuated 

systems in the sense that only the electrical part is 

directly actuated; the mathematical models that 

represent their dynamical behavior are, in general, 

nonlinear and, in many cases, the state is not 

completely available for measurement [1]. The 

main assumption is that every system that belongs 

to the electromechanical class can be decomposed 

into an electrical and a mechanical subsystem 

which it can be viewed as the interconnection of 

electrical and mechanical lumped elements, 

respectively. For the electrical subsystems these 

elements are inductances, capacitances and 

resistances, while for the mechanical subsystem 

are springs, masses and dampers [1]. 

     Motion control is concerned with manipulating 

power to control the movement of a mechanical 

system. A large amount of motion control is now 

performed using electric motors, so that it will be 

our main focus. Motion control systems can be 

quite complicated because many different factors 

have to be considered in the design. The 

following issues must typically be considered: 

- Reduction of the influence of plant disturbances 

- Attenuation of the effect of measurement noise 

- Variations and uncertainties in plant behavior 

     It is difficult to find design methods that 

consider all these factors, especially for the 

conventional control approaches where control 

designs involve compromises between conflicting 

goals. In order to design control systems to get 

high performance and robustness when 

controlling such complicated processes, advanced 

controllers have been introduced. 

     From control design point of view there are 

mainly three problems for the application of many 

control theories which can be summarized as 

follows; 

1) The nonlinearity and non-smoothness in 

its model due to the friction model and 

the nonlinear spring. 
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2)  The uncertainty in system model 

parameters. 

3) The matching condition is not satisfied 

(where the perturbations that enter the 

state equation do not at the same point as 

the control input). 

     The solutions of these problems, which exist in 

literature, can be classified to two types: 

In the first, the electrical part is ignored 

(the inductance in the mathematical model of the 

DC motor is ignored), consequently this leads to 

delay in the performance of the system [2], [3], 

[4], [5]. 

     The second solution is focused when the 

electrical part is not neglected and the external 

and un-modeled dynamics (the perturbation) are 

smooth. For the smooth perturbation the control 

design uses a systematic Backstopping [6], but 

when the perturbation is not smooth in this 

situation the best that can be done is to regulate 

the state to a positively invariant set including the 

origin and stay there for all future time [7].   

     Another solution for control design is by using 

Backstopping but after approximating the 

perturbation (making it smooth) [8]. On the other 

hand, the complete electromechanical system 

model can be used for control design but with 

nominization of the system model to a nonlinear 

canonical form [9]. 

     The sliding mode control method, can be 

solved the first and second problems since it can 

deal with these types of nonlinearity and non-

smoothness in affecting system behavior. The 

third problem is frequently arises in the 

electromechanical system where the uncertainty 

in system model and the disturbances does not 

appear in the control channel. The effect of the 

mismatched uncertainty and disturbances can be 

attenuated, but not eliminated, as in case of using 

integral sliding mode control (ISMC) [10]. 

     In this paper a new approach is suggested for 

an electromechanical system control design 

without neglecting the electrical subsystem (ES) 

or approximating the non-smooth perturbation. 

First the controller is designed to transform the 

ES to a low pass filter (LPF) with a suitable small 

time constant. Then a control law is derived for 

the mechanical system using sliding mode control 

theory which it is able to force the mechanical 

state to the desired reference in spite of the 

presence of uncertainty and external disturbances 

in the electromechanical system model. The 

simulation results for a typical electromechanical 

system in the subsequent sections will 

demonstrate the effectiveness of the proposed 

approach. 

 

 

 

2. Electromechanical Model 

Description:- 

 

Figure 1: Schematic diagram of the 

considered electromechanical sample system, 

an inverted pendulum actuated by a DC 

motor [11]. 
 

     The DC-motor can be mathematically modeled 

by using the dynamic equivalent circuit of DC-

motors. The voltage equation of the armature 

circuit under transient given by the following 

equation [11]: 

𝑣𝑎 = 𝑅𝑎𝑖𝑎 + 𝐿𝑎
𝑑𝑖𝑎

𝑑𝑡
+ 𝑣𝑏                             …..  (1) 

where:  

𝑣𝑎-the source voltage (voltage) 

𝑖𝑎-the motor armature current (Amber) 

𝑣𝑏 = 𝑘𝑛𝑤𝑚-the back emf (voltage) 

From the dynamics of motor load system: 

𝐽
𝑑𝜔𝑚

𝑑𝑡
= 𝑇 − 𝑇𝐿 − 𝑐1𝜔𝑚                             …..  (2) 

 

where [11] 
 

 𝑇 = 𝑘𝑚𝑖𝑎                      

𝑇𝐿 = −
1

𝛾
𝑚𝑔𝑙 sin ( 

𝜃

𝛾
 )

}                                …..  

(3) 

where: 

 T,𝑇𝐿- are the motor electromagnetic torque and 

the mechanical torque of the load, respectively 

and  𝜃-the angle of the pendulum with the upright 

position being zero. The other parameters are 

described in Table (4.1) 

     Now let 𝑥1 = 𝜃 , 𝑥2 = �̇� = 𝜔𝑚, 𝑥3 = 𝑖𝑎 and 

the manipulated variable 𝑢 = 𝑣𝑎 then, the 

mathematical model in Eqns. (1), (2) can be 

rewritten as follows: 
 

�̇�1 = 𝑥2                                                       …..  (4) 

�̇�2 =
1

𝐽
(𝑘𝑚𝑥3 − 𝑐1𝑥2 +

1

𝛾
 𝑚𝑔𝑙 sin (

𝑥1

𝛾
))    …..  (5) 

�̇�3 =
1

𝐿
(𝑢 − 𝑅𝑎𝑥3 − 𝑘𝑛𝑥2)                         …..  (6) 
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Let: 𝑎21 =
1

𝐽𝛾
𝑚𝑔𝑙 , 𝑎22 =

𝑐1

𝐽
 , 𝑎23 =

𝑘𝑚

𝐽
, 𝑎32 =

𝑘𝑛

𝐿
 

, 𝑎33 =
𝑅𝑎

𝐿
 , and  𝑏3 =

1

𝐿
 then the system becomes: 

�̇�1 = 𝑥2                                                      …..  (7) 

�̇�2 = 𝑎21 sin (
𝑥1

𝛾
) − 𝑎22𝑥2 + 𝑎23𝑥3           …..  (8) 

�̇�3 = −𝑎32𝑥2 − 𝑎33𝑥3 + 𝑏3𝑢                     …..  (9) 

     Where Eqs (7) and (8) are for the mechanical 

subsystem (MS) and Eq. (9) is for the electrical 

subsystem (ES). 
 

3. Sliding Mode Control: 
     Sliding-mode control (SMC) is a robust 

technique, well known for its ability to reject the 

external disturbances and model uncertainties 

satisfying the matching condition, that is, 

perturbations that enter the state equation at the 

same point as the control input. SMC has other 

advantages as well, like ease of implementation 

and reduction in the order of the state equation. 

The conventional SMC design methodology 

comprises two steps: 

      First, design a sliding manifold (named also 

as switching manifold) such that the system’s 

motion along the manifold meets the specified 

performance. Second design a (discontinuous) 

control law such that the system’s state is driven 

toward the manifold and stays there for all future 

time, regardless of disturbances or uncertainties 

In spite of the robustness of SMC against the 

matched disturbances and ease of implementation, 

but it has two main disadvantages: 

     The first is in the case of mismatched 

disturbances. F. Castaños and L. Fridman suggest 

the use of the integral sliding mode to reject the 

matched disturbances and the 𝐻∞ techniques to 

attenuate the unmatched one [12]. The Integral 

Sliding Mode Control (ISMC) is also applied for 

the nonlinear Systems with matched and 

mismatched perturbations by Matteo Rubagotti 

et.al. [10]. The second problem is the chattering 

behavior which  frequently appears in sliding 

mode control system for many reasons such as the 

non-ideality of the switching process as shown in 

the excellent reference by V. I. Utkin [2009][13].  

     In the following subsection is given the design 

of sliding mode controller for the 

electromechanical system that includes a primary 

design step devoted to transform the electrical 

subsystem to a low pass filter with the desired 

time constant. 

3.1 SMC Design for electromechanical 

system: 
     In this section a new SMC is designed to the 

electromechanical system that taken into 

consideration the uncertainty in system model and 

the presence of the nonlinearity. Moreover the 

mismatch and chattering problems are considered 

where the controller designed first to transform 

the electrical subsystem to a low pass filter with 

desired time constant. Now the mathematical 

model of the electromechanical system as derived 

in section two is given by 

�̇�1 = 𝑥2                                                     …..  (10) 

�̇�2 = 𝑓2(𝑥) + 𝑔2(𝑥)𝑥3                             …..  (11)  

�̇�3 = 𝑓3(𝑥) + 𝑔3(𝑥)𝑢                              …..  (12)  

where  𝑓2(𝑥) = 𝑎21 sin (
𝑥1

𝛾
) − 𝑎22𝑥2 , 𝑔2(𝑥) =

𝑎23, 𝑓3(𝑥) = −𝑎32𝑥2 − 𝑎33𝑥3, and  𝑔3(𝑥) = 𝑏3. 

     The first step in the present design for the 

sliding mode control is to transform the electrical 

subsystem (Eq. (12)), to a low pass filter as 

follows;  

Let, 𝑓3(𝑥) + 𝑔3(𝑥)𝑢 =
1

𝑇
(−𝑥3 + 𝜗)        …..  (13) 

Then Eq. (12) becomes: 

�̇�3 =
1

𝑇
(−𝑥3 + 𝜗)                                     …..  (14) 

 

     Where 𝑇 is the time constant (selected) for the 

Low Pass Filter (LPF) induced by the controller 𝑢 

where it is assumed that 𝑓3, 𝑔3 are known without 

uncertainty. Accordingly the system dynamics 

becomes:- 

(𝑀𝑆) {
�̇�1 = 𝑥2                                               … . .   (15)

�̇�2 = 𝑓2(𝑥) + 𝑔2(𝑥)𝑥3                    … . .  (16)
 

(𝐸𝑆) {�̇�3 =
1

𝑇
(−𝑥3 + 𝜗)                          …..  (17) 

     To this end replace 𝑥3 by  𝜗  in Eq. (16) the 

sliding mode controller for the MS may then be 

designed as follows; dividing the system into 

nominal part and uncertainty part  

�̇�1 = 𝑥2                                                

�̇�2 = 𝑓2𝑜(𝑥) + 𝑔2𝑜(𝑥)𝜗 + 𝛿(𝑥, 𝑢)
}         …..  (18) 

     Where 𝑓2𝑜(𝑥) and 𝑔2𝑜(𝑥) are the nominal 

functions of  𝑓2(𝑥) and 𝑔2(𝑥) respectively while 

𝛿(𝑥, 𝑢) is the uncertainty term resulting from the 

uncertainty in system dynamics. 𝛿(𝑥, 𝑢), which is 

given by 

𝛿(𝑥, 𝑢) = ∆𝑓2(𝑥) + ∆𝑔2(𝑥)𝜗                  …..  (19) 

     Let the sliding variable 𝑠 (named also in the 

literature as switching function) be defined as; 

𝑠 = 𝑒2 + 𝑐𝑒1                                             …..  (20) 

Consequently the sliding variable time derivative 

is 

�̇� = �̇�2 + 𝑐�̇�1                                             …..  (21) 

where  𝑐 > 0 and  

𝑒1 = 𝑥1 − 𝑥𝑑 , �̇�1 = 𝑒2   

𝑒2 = 𝑑𝑒1 = 𝑥2 − �̇�𝑑  ,  �̇�2 = �̇�2 − �̈�𝑑 

When the sliding variable reaches the zero value 

(the switching manifold  (𝑠 = 0) the error 
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function   𝑒1 will decay asymptotically to the 

origin since  𝑐 > 0. The second step is devoted to 

derive the control law that will enforce the state to 

reach the sliding manifold in finite time.  

From Eq. (18) �̇� becomes  

�̇� = 𝑓2𝑜(𝑥) + 𝑔2𝑜(𝑥)𝜗 + 𝛿(𝑥, 𝑢) + 𝑐𝑒2 − �̈�𝑑           

   = 𝑓2𝑜(𝑥) + 𝑔2𝑜(𝑥)𝜗 + 𝛿(𝑥, 𝑢) + 𝑐𝑥2 − 𝑐�̇�𝑑 

       −�̈�𝑑                                                    …..  (22) 

     To design a sliding mode controller the 

candidate Lyapunov function is selected as 

𝑉 = |𝑠| 
and its time derivative  �̇� is  

�̇� = �̇� ∗ 𝑠𝑔𝑛(𝑠), 𝑠 ≠ 0 

     This is known as the generalized derivative 

since the candidate Lyapunov function is non-

smooth [14]. 

or 

�̇� = 𝑠𝑔𝑛(𝑠) ∗ (𝑓2𝑜(𝑥) + 𝑔2𝑜(𝑥)𝜗 + 𝛿(𝑥, 𝑢) 

           +𝑐𝑥2)                                              …..  (23) 

The ask is to select  𝜗 such that �̇� is negative 

definite. In this work  𝜗  is selected as in the 

conventional sliding mode by 

𝜗 =
−1

𝑔2𝑜(𝑥)
(

𝑓2𝑜(𝑥) + 𝑐𝑥2 + 𝑘(𝑥) ∗ 𝑠𝑖𝑔𝑛(𝑠)

−𝑐�̇�𝑑 − �̈�𝑑
)  

                                                                …..  (24) 

Then �̇� becomes; 

�̇� = 𝑠𝑔𝑛(𝑠) ∗ (−𝑘(𝑥) ∗ 𝑠𝑖𝑔𝑛(𝑠) + 𝛿(𝑥, 𝑢)) 

    = −𝑘(𝑥) + 𝑠𝑖𝑔𝑛(𝑠) ∗ 𝛿(𝑥, 𝑢)  

    ≤ −𝑘(𝑥) + |𝛿(𝑥, 𝑢)|                           …..  (25) 

     The gain 𝑘(𝑥) that will make the inequality 

(25) less than zero (attractiveness of the sliding 

manifold and sliding motion)is selected as 

follows; 

𝑘(𝑥) > |𝛿(𝑥, 𝑢)|                                      …..  (26) 

 

where  

|𝛿(𝑥, 𝑢)| = |∆𝑓2(𝑥)| + |∆𝑔2(𝑥)𝜗| 

= |∆𝑓2(𝑥)| + |∆𝑔2(𝑥) ∗ {(
−1

𝑔2𝑜(𝑥)
)(𝑓2𝑜(𝑥) + 𝑐𝑥2 +

     𝑘(𝑥) ∗ 𝑠𝑖𝑔𝑛(𝑠) − 𝑐�̇�𝑑 − �̈�𝑑)}|   

=|∆𝑓2(𝑥)| + |
∆𝑔2(𝑥)

𝑔2𝑜(𝑥)
| ∗ |𝑓2𝑜(𝑥) + 𝑐𝑥2 − 𝑐�̇�𝑑 −

   �̈�𝑑| + |
∆𝑔2(𝑥)

𝑔2𝑜(𝑥)
| ∗ 𝑘(𝑥)                              …..  (27) 

     Substituting Eq. (27) in the inequality (26) and 

solving for 𝑘(𝑥) we obtain: 

 

 

 

 

𝑘(𝑥) > 

max {|∆𝑓2(𝑥)|+|
∆𝑔2(𝑥)

𝑔2𝑜(𝑥)
|∗(|𝑓2𝑜(𝑥)+𝑐𝑥2−𝑐�̇�𝑑−   �̈�𝑑|)}

1−max ( |
∆𝑔2(𝑥)

𝑔2𝑜(𝑥)
| )

   

or  

𝑘(𝑥) =  𝑘𝑜 + 

max {|∆𝑓2(𝑥)|+|
∆𝑔2(𝑥)

𝑔2𝑜(𝑥)
|∗(|𝑓2𝑜(𝑥)+𝑐𝑥2−𝑐�̇�𝑑−   �̈�𝑑|)}

1−max ( |
∆𝑔2(𝑥)

𝑔2𝑜(𝑥)
| )

   

                                                                 …..  (28) 

where 𝑘𝑜 is a positive constant, and   

|∆𝑓2(𝑥)| =  |∆𝑎21sin (
𝑥1

𝛾
) + ∆𝑎22𝑥2|  

                ≤ |∆𝑎21||sin(
𝑥1

𝛾
)| + |∆𝑎22||𝑥2|, 

|∆𝑔2(𝑥)| =  |∆𝑎23|,  and 

(|𝑓2𝑜(𝑥) + 𝑐𝑥2 − 𝑐�̇�𝑑 −    �̈�𝑑| 

                     = |
𝑎21𝑜 sin (

𝑥1

𝛾
) − 𝑎22𝑜𝑥2 + 𝑐𝑥2

−𝑐�̇�𝑑 − �̈�𝑑

|  

                   ≤ 𝑎21𝑜 |sin (
𝑥1

𝛾
)| + |𝑐 − 𝑎22𝑜||𝑥2| 

                       +𝑐|�̇�𝑑| + |�̈�𝑑|   
The control law  𝒖 eventually is given by: 

𝑢 =  
1

𝑔3
 (−𝑓3(𝑥) +

1

𝑇
(−𝑥3 + 𝜗))            …..  (29) 

     Finally the control design idea, that is 

presented in this work, can be summarized here as 

follows; 

1) Transforming the electrical subsystem via state 

feedback to a LPF with the desired time constant. 

This step (which it is a primary control design) is 

a continuous function of the EMS states.  

2) Reducing the dynamical model of the 

electromechanical system by ignoring the LPF for 

small time constant. This step reduce the model to 

a mechanical system only. 

3) Designing a sliding mode controller 

(discontinuous controller) for the mechanical 

system where the mismatch property is removed. 

The designed discontinuous controller will be 

able to controlling the mechanical subsystem in 

the presence of the uncertainty and disturbances 

in system model. 
 

3.2 The Control Design and Chattering 

Attenuation Property: 
     The controller which is the input to the low 

pass filter (LPF) consists of a continuous primary 

controller and the discontinuous controller while 

the output of the LPF is the actual control input 

for the mechanical system. The output of the LPF 

with suitable time constant will be the equivalent 

control for the sliding mode controller [13]. 

Therefore the control system insensitivity to 

uncertainty and external disturbances are 

preserved especially after reaching sliding 

manifold. Moreover the chattering in system 

response which is directly related to the amplitude 

of the discontinuous control is attenuated since 

the actual control affected the mechanical system 
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will have smaller discontinuous control gain 𝑘 at 

the sliding manifold.  
 

4. Simulations Result and Discussion 
     In this section, the numerical simulations for 

the electromechanical system implemented are 

based on the full order model as given in Eqs. (10, 

11, 12), with the control law from Eq. (29) and  

𝑘(𝑥) as determined in Eq. (28). The simulations 

are performed using MATLAB with initial 

condition ( 𝜃(0), �̇�(0), 𝑖(0) ) = (0,0,0) and the 

parameters for the electromechanical system as 

given in table (1) below. In addition the slope 

used for the sliding manifold is 𝑐 = 35 
 

Table 1: The parameters used for the 

electromechanical system [11] 
Parameter Definition Value Units 

𝑅𝑎 Armature resistance 0.316 Ω 

𝐿𝑎 Armature inductance 0.00008 H 

𝑘𝑚 Torque constant 0.0302 Nm/A 

𝑘𝑛 Induction constant of 

the DC motor 

60/317 Vs 

𝐽 Moment of inertia of 

the motor load system 

1.3400e-

005 
kg m2 

𝑐1 Friction constant 0.003 Nms/rad 

𝛾 Gear reduction of the 

motor 

91  

𝑚 Pendulum mass 0.3 Kg 

𝑔 Gravitational constant 9.81 m/s2 

𝑙 Pendulum length 0.5 M 
 

     Two simulation tests are presented below 

which aim firstly to show the ability and features 

of the proposed sliding controller as derived in 

section 3.1, and secondly to compare the obtained 

results with the sliding mode controller designed 

after ignoring the inductance in the electrical 

subsystem. The comparison include the time 

required to reach the reference value, the control 

input and the chattering that is induced due to the 

discontinuity in the control law. The classical 

SMC with ignored inductance is derived in 

Appendix A (Equation (A22) and Eq. (A26) for 

the control law and the gain 𝑘 respectively).   

Test one:  Reference angle is constant (𝜃𝑟 =
0.175 rad)  
     Figure (2) shows the simulation result for the 

angle θ with time and with variation in moment of 

inertia equal to (20%). Plotting the sliding 

variable 𝑠(𝑡) demonstrate the effectiveness and 

the robustness of the sliding mode controller 

where the system dynamics is free from the 

uncertainty in moment of inertia when 𝑠(𝑡) 

becomes equal to zero after (0.2 𝑠𝑒𝑐𝑜𝑛𝑑). The 

sliding variable is plotted versus time in figure (3) 

with a small bound of oscillation around the 

switching manifold. In figure (4), the control 

action 𝑢(𝑡) is plotted for the electromechanical 

system using the proposed sliding mode 

controller. In addition figure (5) shows the phase 

plot of  𝑥2 = �̇� vs. 𝑥1 = 𝜃.  

     Figures (6)-(9) summaries the simulation 

results for the electromechanical system with 

ignored(negligible) inductance of the DC motor 

(L≈0). Figure (6) shows the simulation result for 

the angle θ versus time and with variation in load 

equal to (20%) while figure (7) plots the sliding 

variable 𝑠(𝑥) with time. The time required to 

reach the sliding manifold does not exceed 

0.01 𝑠𝑒𝑐𝑜𝑛𝑑. The control action 𝑢(𝑡) is plotted 

for the electromechanical system control system 

with ignored inductance (𝐿) in figure (8). Figure 

(9) shows the phase plot of  𝑥2 = �̇� vs. 𝑥1 = θ. 

Finally figures (10) and (11) summarize the phase 

plot of  𝑥2 = �̇� vs. 𝑥1 = θ  and the control effort 

𝑢(𝑡) versus time  for the electromechanical 

system with and without ignored inductance (𝐿). 

    As mentioned previously, two features of the 

present proposed SMC   can be distinguished 

from figures (2)-(9) which are; chattering 

attenuation and the magnitude of the control 

effort. Chattering attenuation is well clarified for 

the proposed controller when comparing Figs. (3) 

and (7) and it can also be deduced from the plot of 

the control input in Figs. (4) and (8), where a high 

oscillation is shown in Fig. (8) for the case of 

ignoring inductance. As a final proof for 

chattering attenuation property in the proposed 

controller is the phase plane plot and the control 

effort for the proposed and the classical SMC 

plotted in Figs. (10) and (11) respectively. In 

these figures the amplitude of oscillation around 

an average value can be taken as a measure for 

state chattering. Figure (10) plot the amplitude of 

the state oscillation around the sliding manifold 

which it is greatly reduced when using the present 

proposed controller. In addition, the attenuation 

property can be deduced from Fig. (11) where the 

control input voltage highly oscillated  around an 

average value represent by the control effort using 

the proposed control law. The control voltage 

according to the proposed control law is nearly 

equal the equivalent control [13] (it also named 

“the real sliding mode control” [15]) where the 

sliding motion is preserved with less chattering 

amplitude. The control input (the voltage) 

required in this design is  0.77  𝑉𝑜𝑙𝑡 while in the 

case of ignoring inductance its value is 2.2 𝑉𝑜𝑙𝑡 

(approximately three times) (Fig. (11)). 
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Figure 2: Angle vs. time for the 

Electromechanical System 
 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 3: Sliding Variable s(x) vs. time 

 for the Electromechanical System 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Control Action u(t)  vs. time for 

the Electromechanical System 

 

 

 

 

 

 

 

 

 
 

Figure 5: phase plot of x2 vs. x1 for the 

Electromechanical System 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6: Angle vs. time for the 

Electromechanical System with ignored 

inductance (L) 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Sliding Variable  s(x) vs. time For 

the Electromechanical System with ignored 

inductance (L) 
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Figure 8: Control Action u(t)  vs. time  for the 

Electromechanical System with ignored 

inductance (L) 
 

 

Figure 9: phase plot of x_2 vs. x_1  for the 

Electromechanical System with ignored 

inductance (L) 

 

 

 

Figure 10: phase plot of x_2 vs. x_1  for the 

Electromechanical System with and without ignored 

inductance (L) 
 
 
 

Figure 11: Control Action u(t)  vs. time  for the 

Electromechanical System with and without 

ignored inductance (L) 
 

Test two:  Reference angle is piecewise constant 

             

𝜃𝑟 = 0 rad.  𝑓𝑜𝑟    0 ≤ 𝑡 ≤ 1       
              = 0.175 rad.  𝑓𝑜𝑟    1 < 𝑡 ≤ 1.5    

         = 0    rad.  𝑓𝑜𝑟    1.5 < 𝑡 ≤ 2    

               = 0.175 rad.  𝑓𝑜𝑟    2 < 𝑡 ≤ 2.5    
   = 0 rad.   𝑓𝑜𝑟  2.5 < 𝑡 ≤ 3

 

       The ability and the effectiveness of the 

proposed controller is again tested for a piecewise 

constant reference angle given above. The 
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simulation results are plotted in Fig. (12) to show 

the ability of the SMC in forcing the angle θ to 

follow the desired trajectory with the variation in 

load equal to (20%) while the sliding variable 

𝑠(𝑥) and the control action 𝑢(𝑡) are plotted with 

time in Figs. (13) and (14) respectively. As can be 

seen from Fig. (13) the amplitude of state 

oscillation around the sliding manifold is small 

and consequently the chattering is attenuated.  
 

 

Figure 12: Angle vs. time for the 

Electromechanical System 
 

 

Figure 13:Sliding Variable s(x) vs. time For the 

Electromechanical System 

 

 

 

 

 

Figure 14: Control Action u(x) vs. time For 

the Electromechanical System 
 

5. Conclusions 
     In this paper a sliding mode control for 

electromechanical systems was developed with 

new approach. Results show that the proposed 

control scheme improves performance of 

electromechanical systems compared to 

conventional control schemes. Namely the 

proposed method consists of transforming the 

electrical subsystem to a Low Pass Filter with a 

suitable time constant allows, then designing a 

sliding mode controller to the mechanical 

subsystem in the usual way. This approach 

avoiding neglecting the electrical part (ES) or 

approximation the non-smooth perturbation and 

achieving the matching condition. As results the 

chattering is attenuated with smaller control 

efforts (the voltage). The simulation results prove 

first the robustness and effectiveness of the 

proposed controller for a bounded uncertainty in 

system parameters with the presence of 

nonlinearity. Secondly the simulation results, for 

the reference pendulum angle 𝜃𝑟 = 0.175 rad, 

show that the chattering is attenuated when 

compared with design sliding mode control of 

electromechanical system with ignoring the 

electrical part. In addition the control effort is 

reduced approximately three times the control 

efforts value required for the SMC with ignoring 

the electrical part. 
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Appendix (A): SMC design with 

ignoring inductance 
 

The electromechanical system model: 

�̇�1 = 𝑥2                                                    (A.1) 

�̇�2 =
1

𝐽
(𝑘𝑚𝑥3 − 𝑐1𝑥2 +

1

𝛾
𝑚𝑔𝑙 sin (

𝑥1

𝛾
))  (A.2) 

�̇�3 =
1

𝐿
(−𝑅𝑎𝑥3 − 𝑘𝑛𝑥2 + 𝑢)                   (A.3) 

     To simplify the electromechanical system 

model, the motor inductance 𝐿 is ignored (i.e., by 

considering 𝐿 ≈ 0). Accordingly the 

electromechanical system model in Equations 

(A.1-A.3) are reduced to a system with lower 

dimension as can be noted in the following steps: 

𝐿�̇�3 = (𝑢 − 𝑅𝑎𝑥3 − 𝑘𝑛𝑥2)                      (A.4) 

For  𝐿 ≈ 0 

0 ≈ −𝑅𝑎𝑥3 − 𝑘𝑛𝑥2 + 𝑢                          (A.5) 

𝑅𝑎𝑥3 = −𝑘𝑛𝑥2 + 𝑢                                 (A.6) 

Now solving for 𝑥3 yields: 

𝑥3 =
−𝑘𝑛

𝑅𝑎
𝑥2 +

1

𝑅𝑎
𝑢                                  (A.7) 

     Substitution the value of 𝑥3 from Equation 

(A.7) into Equation (A.2), yields: 

�̇�1 = 𝑥2                                                    (A.8) 

�̇�2 =
1

𝐽
(𝑘𝑚(

−𝑘𝑛

𝑅𝑎
𝑥2 +

1

𝑅𝑎
𝑢) − 𝑐1𝑥2 +

1

𝛾
𝑚𝑔𝑙 sin (

𝑥1

𝛾
))                                         (A.9) 

     The system can be arranged as follows 

�̇�1 = 𝑥2                                                  (A.10) 

�̇�2 =
1

𝐽𝛾
𝑚𝑔𝑙 sin (

𝑥1

𝛾
) − ( 

𝑐1

𝐽
−

𝑘𝑚𝑘𝑛

𝐽𝑅𝑎
 )𝑥2 +

1

𝐽𝑅𝑎
𝑢                                                      

(A.11) 

Let: 

𝑎21 =
1

𝐽𝛾
𝑚𝑔𝑙 , 𝑎22 =

𝑐1

𝐽
+

𝑘𝑚𝑘𝑛

𝐽𝑅𝑎
 , 𝑏2 =

1

𝐽𝑅𝑎
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     The reduced electromechanical system can be 

written as: 

�̇�1 = 𝑥2                                                

�̇�2 = 𝑎21 sin (
𝑥1

𝛾
) −  𝑎22 𝑥2 + 𝑏2𝑢

}    (A.12)  

Let  𝑓2(𝑥) = 𝑎21 sin (
𝑥1

𝛾
) − 𝑎22𝑥2  

         𝑔2(𝑥) = 𝑏2 

�̇�1 = 𝑥2                   
                   

�̇�2 = 𝑓2(𝑥) + 𝑔2𝑢
    }                           (A.13)  

     Writing Equation (A.13) as a nominal and 

perturbation term, yields; 

�̇�1 = 𝑥2                                         
                   

�̇�2 = 𝑓2𝑜(𝑥) + 𝑔2𝑜𝑢 + 𝛿(𝑥, 𝑢)
   }       (A.14)  

where 𝑓2𝑜(𝑥) and 𝑔2𝑜(𝑥) are the nominal 

functions of  𝑓2(𝑥) and 𝑔2(𝑥) respectively while 

𝛿(𝑥, 𝑢) is the uncertainty term results from the 

uncertainty in system dynamics. 𝛿(𝑥, 𝑢) is given 

by 

𝛿(𝑥, 𝑢) = ∆𝑓2(𝑥) + ∆𝑔2(𝑥)𝑢              (A.15) 

Let the sliding variable be defined as; 

𝑠 = 𝑒2 + 𝑐𝑒1                                         (A.16) 

Consequently the sliding variable time derivative 

is 

�̇� = �̇�2 + 𝑐�̇�1                                         (A.17) 

where  

𝑒1 = 𝑥1 − 𝑥𝑑 , �̇�1 = 𝑒2   

𝑒2 = 𝑑𝑒1 = 𝑥2 − �̇�𝑑  ,  �̇�2 = �̇�2 − �̈�𝑑 

�̇� = �̇�2 + 𝑐�̇�1 = �̇�2 − �̈�𝑑 + 𝑐(𝑥2 − �̇�𝑑) 

From Eq. (A.14) �̇� becomes  

�̇� = 𝑓2𝑜(𝑥) + 𝑔2𝑜(𝑥)𝑢 + 𝛿(𝑥, 𝑢) + 𝑐𝑥2 −
        𝑐�̇�𝑑 − �̈�𝑑                                       (A.18) 

To design a sliding mode controller the candidate 

Lyapunov function is selected as 

𝑉 = |𝑠|                                                  (A.19) 

and its time derivative  �̇� is  

�̇� = �̇� ∗ 𝑠𝑖𝑔𝑛(𝑠), 𝑠 ≠ 0                         (A.20) 

or 

�̇� = 𝑠𝑖𝑔𝑛(𝑠) ∗ (𝑓2𝑜(𝑥) + 𝑔2𝑜(𝑥)𝑢 +
        𝛿(𝑥, 𝑢) + 𝑐𝑥2 − 𝑐�̇�𝑑 − �̈�𝑑)             (A.21) 

The ask is to select  𝑢 such that �̇� is negative 

definite. In this work  𝑢  is selected as in the 

conventional sliding mode by 

𝑢 =
1

𝑔2𝑜(𝑥)
(−𝑓2𝑜(𝑥) − 𝑐𝑥2 − 𝑐�̇�𝑑 − �̈�𝑑 −

                      𝑘(𝑥) ∗ 𝑠𝑖𝑔𝑛(𝑠))                 (A.22)                            

Then �̇� becomes; 

�̇� = 𝑠𝑖𝑔𝑛(𝑠) ∗ (−𝑘(𝑥) ∗ 𝑠𝑖𝑔𝑛(𝑠) + 𝛿(𝑥, 𝑢)) 

    = −𝑘(𝑥) + 𝑠𝑖𝑔𝑛(𝑠) ∗ 𝛿(𝑥, 𝑢)  

    ≤ −𝑘(𝑥) ∗ +|𝛿(𝑥, 𝑢)|                      (A.23) 

The gain 𝑘(𝑥) that will make the inequality (A-

23) less than zero (attractiveness of the sliding 

manifold and sliding motion) is selected as 

follows; 

𝑘(𝑥) > |𝛿(𝑥, 𝑢)|                                  (A.24) 

where  

|𝛿(𝑥, 𝑢)| = |∆𝑓2(𝑥)| + |∆𝑔2(𝑥)𝑢| 

=|∆𝑓2(𝑥)| + |∆𝑔2(𝑥) ∗ {(
1

𝑔2𝑜(𝑥)
)(−𝑓2𝑜(𝑥) −

𝑐𝑥2 − 𝑐�̇�𝑑 − �̈�𝑑 − 𝑘(𝑥) ∗ 𝑠𝑖𝑔𝑛(𝑠))}|  

=|∆𝑓2(𝑥)| + |
∆𝑔2(𝑥)

𝑔2𝑜(𝑥)
| ∗ |𝑓2𝑜(𝑥) − 𝑐𝑥2 − 𝑐�̇�𝑑 −

�̈�𝑑| + |
∆𝑔2(𝑥)

𝑔2𝑜(𝑥)
| ∗ 𝑘(𝑥)                           (A.25) 

By substitute Eq. (A.25) in the inequality (A.24) 

and solving for 𝑘(𝑥) we obtain: 

𝑘(𝑥) >
max {|∆𝑓2(𝑥)|+|

∆𝑔2(𝑥)

𝑔2𝑜(𝑥)
|∗(|𝑓2𝑜(𝑥)|+𝑐|𝑥2|+𝑐|�̇�𝑑|+|�̈�𝑑| )}

1−max ( |
∆𝑔2(𝑥)

𝑔2𝑜(𝑥)
| )

   

or  

𝑘(𝑥) =

 𝑘𝑜 +
max {|∆𝑓2(𝑥)|+|

∆𝑔2(𝑥)

𝑔2𝑜(𝑥)
|∗(|𝑓2𝑜(𝑥)|+𝑐|𝑥2|+𝑐|�̇�𝑑|+|�̈�𝑑|)}

1−max ( |
∆𝑔2(𝑥)

𝑔2𝑜(𝑥)
| )

  

                                                              (A.26) 

where 𝑘𝑜 is a positive constant and  

|∆𝑓2(𝑥)| =  |∆𝑎21sin (
𝑥1

𝛾
) + ∆𝑎22𝑥2|  

                ≤ |∆𝑎21||sin (
𝑥1

𝛾
)| + |∆𝑎22||𝑥2|, 

|∆𝑔2(𝑥)| =  |∆𝑏2|, 
|𝑓2𝑜(𝑥) − 𝑐𝑥2 − 𝑐�̇�𝑑 − �̈�𝑑| =

                       |
𝑎21𝑜 sin (

𝑥1

𝛾
) − 𝑎22𝑜𝑥2 −

    𝑐𝑥2 − 𝑐�̇�𝑑 − �̈�𝑑

|  

≤ |𝑎21𝑜| |sin (
𝑥1

𝛾
)|+|𝑎22𝑜 + 𝑐||𝑥2| + 𝑐|�̇�𝑑| + |�̈�𝑑| 
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 مسيطر ذو شكل إنزلاقي للأنظمة الكهروميكانيكية مع تخفيف للإرتجاج
 

 رؤى مؤيد الوردي 

 الجامعة التنولوجية

 قسم هندسة السيطرة والنظم

العراق-بغداد  

 

 شبلي أحمد السامرائي

 الجامعة التنولوجية

 قسم هندسة السيطرة والنظم

العراق-بغداد   

 

 :الخلاصة
 

يمكن إعتبار الأنظمة الكهروميكانيكية كآلات تقوم بتحوبل الطاقة الكهربائية الى طاقة ميكانيكية. كل نظام      
. بسبب عوامل كثيرة قد (MS)و نظام جزئي ميكانيكي   (ES)كهروميكانيكي يمكن تجزئته الى نظام جزئي كهربائي 

تكون السيطرة على حركة هذه الأنظمة غاية بالتعقيد حيث يجب الأخذ بهذه العوامل عند التصميم. يمكن تلخيص هذه 
في النموذج الرياضي، الشك أو عدم اليقين في معاملات ( non-smoothness)العوامل على إنها اللاخطية، الخشونة 

 .(the matching condition)ذج شرط الموائمة النموذج وأيظا عدم تحقيق النمو
في هذا البحث تم إقتراح إسلوب جديد في تصميم المسيطر المنزلق للأنظمة الكهروميكانيكية بدون الحاجة لإلغاء 
المحاثة في الدائرة الكهربائية أو تقريب التشويش الخشن. تتمثل الخطوة الأولى بتحوبل النظام الكهربائي الى مرشح 

بينما الخطوة الثانية تتمثل بتصميم مسيطر منزلق للنظام الميكانيكي والتي ستتمكن من إزالة تأثير  (LPF)  منخفض
يكون المسيطر المنزلق هو المسيطر  (LPF)الشك و الخشونة بالنموذج الرياضي. بإختيار مناسب للثابت الزمني لل 

في حالة التصميم التقليدي للمسيطر المنزلق والذي  المكافئ وكنتيجة لذلك ستخفف الإرتجاجات بشكل أكبر من تلك
صمم بعد إهمال النظام الكهربائي وأيضا مع فولتية داخلة أقل. إن نتائج المحاكات الرياضية لمنظومة كهروميكانيكية 

جانب معينة أظهرت علو مقدرة التصميم المفترح بالمقارنة بالتصميم التقليدي وبخاصيتين مهمتين للمسيطر المنزلق ،ب
قدرته على إرغام متغير الحالة لتتبع موقع معين، حيت تم تخيض الإرتجاج بشكل كبير وأيظا تقليل الفولتية الداخلة 

 )تقريبا ثلث الفولتية المطلوبة في حالة امسيطر المنزلق التقليدي(.
 
 

 

 


