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Abstract 
Medical image segmentation plays a crucial role in the realm of medical 

imaging. The process involves the division of an image to obtain a comprehensive 

view and ensure precise diagnostics. There are various methods that are employed, 

ranging from traditional approaches to the more advanced deep learning 

techniques. Both play a significant role in enhancing healthcare. With the 

continuous advancement in technology, there is a growing need for accurate 

segmentation. While traditional methods such as thresholding and region growing 

are effective, they may require human intervention for complex cases. Deep 

learning techniques, particularly Convolutional Neural Networks (CNNs), have 

significantly improved the process by learning intricate details and accurately 

segmenting the image. When these methods are combined, healthcare professionals 

can achieve high-quality, precise results. Furthermore, with the advancements in 

hardware and technology, real-time segmentation is now possible. Generally, the 

process of dividing medical images into segments is extremely important for the 

progress of healthcare with the help of artificial intelligence and the most recent 

advancements in the industry, such as explainable AI and multimodal learning. 

However, this meticulously detailed and in-depth review provides an all-

encompassing and extensive analysis of the current methods utilized, their 

multitude of applications across various fields, and the promising emerging 

advancements that have the potential to pave the way for remarkable future 

improvements and innovations. 

Keywords: Thresholding Based Technique, Region-Based Segmentation, Edge-

Based Segmentation, Machine Learning-Based Methods 

 نظرة عامة على أ ساليب تجزئة الصور الطبية 
 

 الخلاصة: 

على  للحصول  تقس يم الصورة  تتضمن العملية  مجال التصوير الطبي.  في  حاسًما  دورًا  تقس يم الصور الطبية  تلعب عملية 

لى تقنيات   رؤية شاملة وضمان التشخيص الدقيق. هناك طرق مختلفة يتم اس تخدامها، تتراوح من ال ساليب التقليدية ا 

مًا في تحسين الرعاية الصحية. مع التقدم المس تمر في التكنولوجيا، هناك  التعلم العميق ال كثر تقدمًا. يلعب كلاهما دورًا مه

لا أ نها قد تتطلب   حاجة متزايدة للتجزئة الدقيقة. في حين أ ن الطرق التقليدية مثل تحديد العتبة وتنمية المنطقة فعالة، ا 

(، CNNsت العصبية التلافيفية )تدخلًا بشريًً للحالات المعقدة. لقد حسنت تقنيات التعلم العميق، وخاصة الش بكا

العملية بشكل كبير من خلال تعلم التفاصيل المعقدة وتقس يم الصورة بدقة. عندما يتم الجمع بين هذه ال ساليب، يمكن  

والتكنولوجيا، أ صبح  في ال جهزة  ومع التقدم  على ذلك،  علاوة  ودقيقة.  عالية الجودة  نتائج  تحقيق  لمهنيي الرعاية الصحية 

لى أ جزاء مهمة للغاية لتقدم الرعاية التجزئة في الوقت الحقيقي ممكناً ال   ن. بشكل عام، تعد عملية تقس يم الصور الطبية ا 

والتعلم  للتفسير  القابل  الاصطناعي  الذكاء  مثل  الصناعة،  في  التطورات  وأ حدث  الاصطناعي  الذكاء  بمساعدة  الصحية 

الدقي المراجعة  هذه  توفر  ذلك،  ومع  الوسائط.  المس تخدمة، المتعدد  الحالية  للطرق  وموسعًا  شاملًا  تحليلًا  والمتعمقة  قة 

لتحسينات   الطريق  تمهيد  على  القدرة  لديها  التي  الواعدة  الناش ئة  والتطورات  المجالات،  مختلف  في  المتعددة  وتطبيقاتها 

 . وابتكارات مس تقبلية ملحوظة.

 
1. Introduction to Medical Image 
Segmentation 

Medical image segmentation plays a fundamental 
role in medical image analysis to accurately reveal 

specific clinical information by dividing the annotated 
area. Segmentation refers to partitioning an image of 
interest into multiple spatially coherent regions. 
[1][2][3] Medical image segmentation is an essential 
process because clinical doctors or radiologists can 
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precisely diagnose the occurrence and development of 
the patient's disease; thus, they can plan the best 
individualized treatment for the patient. Currently, 
with the increasing number of aging-in-place facilities, 
the advent of home healthcare technologies, and even 
personal health devices, clinicians are faced with 
looking at a much larger number of diagnostic images 
than they used to. As a result, automated image 
analysis is expected to play an increasingly important 
role in clinical practice. [4][5][6][7][8] 

Segmentation can be classified into three 
categories: structural, appearance, and functional 
based on geometric, temporal, and topical elements. 
This classification assists in tasks like tumor detection, 
organ mapping, and surgical planning by utilizing the 
specific spatial characteristics of diseases to diagnose 
and create treatment plans. Furthermore, unique 
structures of abnormal tissues and organs can be 
identified through segmentation [9][10][11][12]. The 
effectiveness of the analysis results will be improved 
according to the lesions. Typically, the signs of disease 
can be a regional color change and distribution 
irregularity. The textual color distribution of the 
medical image can reflect the basic components of 
those textures to execute the division operation. From 
a functional point of view, due to a pathological 
change in the tissue, the signal of the tissue may be 
simultaneously abnormal. Therefore, it will help in the 
segmentation of the group of tissues and ruptures to 
consider the existence of abnormal signals. The goal of 
segmentation is to divide the images into spatially 
meaningful regions that are perceptually distinctive 
[13][14][15]. It is a means of object interpretation that 
is typically connected to the actual object boundary, 
based on the similarity of characteristics such as color, 
depth, and texture. Automated medical image 
segmentation is a demanding research sector due to 
the variation in medical imaging, including 
inhomogeneity, high noise, sub-cellular features, and 
low image contrast. Pattern recognition and computer-
aided diagnosis are characteristics of medical image 
segmentation, and the requirement for segmentation 
surgeries is increasing. To locate abnormalities, the 
process of medical image segmentation could be 
employed to enhance productivity [16][17][18][19]. 

Segmentation plays a crucial role in a multitude of 
medical domains such as radiology, pathology, and 
medical research. It aids in the identification and 
categorization of medical images, allowing for accurate 
diagnosis and treatment. The process of segmenting 
medical images involves extracting relevant anatomical 
structures or regions of interest, enabling healthcare 
professionals to observe and analyze specific areas 
with precision and clarity. By facilitating the 
localization and measurement of abnormalities, 
segmentation greatly enhances the accuracy of medical 
assessments, aiding in the detection of diseases and the 
development of efficient treatment strategies. 
Consequently, this indispensable technique is widely 
employed and continuously advancing across various 
medical specialties, paving the way for improved 
healthcare outcomes and patient well-being [20][10]. 

Medical image segmentation is an active area of 
research in the medical field. This section deals with an 

introductory and comprehensive overview of medical 
image segmentation. Usually, medical image 
segmentation is defined as the process of separating 
the different regions of interest, such as organs, tissues, 
lesions, and anatomical structures in an image. In order 
to simplify the analysis and interpretation of the 
obtained results and to extract the features, images are 
typically partitioned at various depths and levels. 
Furthermore, the significance of medical image 
analysis is particularly evident in medical diagnostics. 
The segmentation of a medical image provides the 
region of interest for each pixel element that can 
radically influence important administrative issues 
such as evaluation, diagnosis, and treatment [21][9]. 

Accurate image segmentation has significant 
medical implications, such as estimating volume of 
pathological tissues, treatment planning with 3D 
visualization, and monitoring treatment outcomes. It 
is crucial for tasks like biomarker detection, defining 
anatomical objects for diagnosis, and adapting 
segmentation methods for different imaging 
modalities. Medical image segmentation supports 
computer-assisted work in radiology centers and 
attracts scientists due to its challenges. The complexity 
of research in computer vision and image 
segmentation has evolved from low-level to high-level 
approaches, emphasizing the importance of object 
extraction while controlling scene variability [22][23]. 
Wenjian Yao et al. in (2023) introduced a review, that 
explains the evolution of medical image segmentation 
models, whilst their transition from CNNs to 
Transformer-based architectures. It presents a 
theoretical characterization of representative models, 
their performance analysis on benchmark datasets, and 
major challenges in the area as well as future 
directions [24].  

Yan Xu et al. Once these traditional segmentation 
methods include thresholding segmentation, edge-
based methods, region-based methods, clustering and 
graph-based segmentation. It introduces new 
breakthrough in the field of medical image 
segmentation and it significant for diagnosis and 
treatment [25]. 

Xiangbin Liu et al. Reviewed the deep-learning 
based techniques for medical image segmentation in 
detail. Data-driven deep learning-based segmentation 
methods have attained commendable accuracy in 
diverse application domains over recent years; 
however, there exist certain issues that the researchers 
need to mitigate [26]. 

1.1. Applications in Medical Imaging 
Medical image segmentation plays an important 

role in different kinds of medical imaging modalities. 
In radiology, it has been used for the accurate 
identification of anatomical structures for different 
parts of the human body. In oncology, it is used to 
segment tumors in images to help with diagnosis and 
therapy planning. Accurately segmenting brain tumors, 
for instance, can have a strong impact on clinical 
decision-making and on facilitating targeted therapy 
[27]. The location and extent of airway disease can be 
assessed based on CT images and support correct 
treatment strategies. In cardiology, segmentation can 
be used to measure particular clinically relevant metrics 
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such as the left ventricular volume. In addition to the 
above traditional use cases, segmentation has also 
gained significant interest in this pandemic context for 
the development of personalized and home-based 
telemedicine systems that aim for early diagnosis and 
follow-up [21]. It has also been used in personalized 
predictive models based on medical images and deep 
learning for different diseases. In neuroimaging, where 
many distinctive anatomical regions exist, it is 
challenging to accurately segment because of low 
contrast in magnetic resonance images and inter-
subject structural variability. Many of these 
aforementioned applications are greatly impacted by 
the data used, and how some characteristics of that 
data are known to affect the choice of model and loss 
[28]. 

In this section, we explore several real-life 
examples related to medical imaging and the associated 
challenges. Additionally, we provide a brief overview 
of the applications of medical imaging in areas such as 
oncology, radiology, and genetics. For example, in 
radiology, segmentation plays a crucial role in 
accurately identifying specific anatomical parts from 
X-ray, MRI, or CT images, such as the skull, lung, liver, 
and facial segments. Radiologists often spend a 
significant amount of time manually segmenting 
tumors and organs of interest in MRI images for 
cancer treatment planning. Biomedical and genetic 
research is used to precisely measure the internal 
structures of the body and compare organ 
segmentation across different individuals. The 
classification of various genetic diseases and their 
characteristics is becoming more intricate. Tumor cells 
in MRI images have low contrast, making it 
challenging for radiologists to detect and characterize 
them accurately. Brain tissue segmentation is 
employed to begin the process of categorizing 
different elements in images of the human brain, 
including the intracranial cavity, various human brain 
tissues, and the background visible in MRI images 
[17][29][30].  

 

2. Traditional Segmentation approaches  
Traditional segmentation methods can be 

categorized into three classes based on different 
segmentation techniques. These include (1) 
thresholding, (2) region-based, and (3) edge-based 
techniques. Thresholding is classified as the simplest 
technique and can be used for both grayscale and 
binary images. The most representative of this class of 
techniques is based on histogram analysis. It 
implements a technique that groups similar data and 
classifies them based on the range of pixel intensities, 
effectively separating objects from the background. 
Region-based is an extension of thresholding, which 
further refines the segmentation process. The first step 
is to group the neighboring pixels that share similar 
properties. This process allows multiple objects to be 
detected within a single image. Edge-based, on the 
other hand, determines the boundaries or edges of the 
object by finding any abrupt change in intensity value, 
which exposes the region of interest [20][31].  

Each of the above methods has its advantages and 
drawbacks and should be carefully selected according 

to the specific requirements of the imaging technique. 
In general, the techniques mentioned are relatively fast 
in comparison to the newer methods, require less 
computational power, and are good for segmenting 
objects without overlapping boundaries. 
Improvements to these traditional methods in recent 
years are mostly due to enhanced image processing 
algorithms and advancements in computational 
resources. Some improvements in the existing 
algorithms have also been made in the form of fuzzy 
and rough set theory, while energy minimization has 
been employed to ensure more accurate and efficient 
segmentation of MR brain images. However, the 
above-mentioned algorithms still rely on initial user 
input that gives rise to a certain degree of uncertainty 
[32]. 

2.1. Thresholding Based Technique 
Medical image segmentation can be achieved 

through various methods, one of which is 
thresholding. The method is fundamental in 
processing medical images because thresholding is 
used for converting grayscale images to binary ones. 
The conversion implements an attribute of intensity 
that is called the threshold value so that within the 
segmentation, only an object with an intensity value 
higher than the particular threshold value can be 
segmented. In terms of simplicity, thresholding 
methods are at the top of the list; thus, these are 
considered to be the most reliable simplified approach 
and have a short computational time. Although some 
disadvantages can be found, thresholding methods 
remain the most widely implemented approach since 
they can perform well, especially in an initial, 
straightforward segmentation task. The very basic 
principle of thresholding is relatively simple. The 
method employs at least one threshold value to 
convert a grayscale image into a binary image 
[33][34][35]. There are several thresholding methods 
that can be adopted as follows: global, one value of 
thresholding for the whole image data; adaptive, 
determining the threshold value in accordance with an 
image property; and automated. Each intensity value 
of the grayscale image is analyzed to be less than or 
greater than a particular threshold value that separates 
the object of interest from the background. An object 
of interest is a pixel retaining an intensity value higher 
than a given threshold, whereas the background is fully 
set as a pixel below the threshold. A limitation of this 
approach is its sensitivity to noise in medical images 
and consequently the changing of intensities using 
various illumination techniques. To solve the problem, 
accurate selection of the threshold data is crucial. 
Although in some cases, modifications in terms of 
thresholding technique are mandatory to realize 
accurate segmentation results [36][37][38]. 

2.2. Region-Based Segmentation 
Region-based segmentation involves grouping 

neighboring pixels according to some predefined 
criteria. In principle, regions are seed nodes or the 
initial center and grow by incorporating the contiguous 
pixels with similar intensities or textures. The key 
advantage of region-based techniques is that the 
process typically does not involve an elimination step, 
thus segmentation errors that can result from 
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boundary leakage are dramatically reduced. Visually, 
edge noise in the original image causes the boundaries 
of the regional object to be neither smooth nor regular. 
Several region-growing techniques have been 
proposed for use with ultrasound, CT, and MRI scans 
and have been shown to exhibit high performance 
[39][40]. 

The methods differ in terms of the criteria for 
adding new pixels to the growing region. Although all 
MRGS methods use some variation of the region 
growing strategy, two different points of view can be 
explicitly investigated. These methods, referred to as 
region splitting and region merging, are based on 
different primordial ingredients when attacking the 
problem of low-level or early vision. Region splitting 
supposes that the primary step is to consider a unique 
initial region derived from the whole image. Moreover, 
the segmentation method proceeds with splitting the 
existing region into two or more subregions. Notably, 
region properties help to select points that form 
subregions. The number of regions involved in the 
splitting process is generally determined by the 
number of disjointed regions in which the original 
region has been split. The region splitting view 
represents an agglomerative approach to image 
segmentation, since the original accidental and 
completely arbitrary region in the image is divided into 
homogeneous ones. Region merging, on the other 
hand, postulates the compelling concept of joining or 
merging individual pixels, with the idea that they are 
only added to the region if these pixels are sufficiently 
homogeneous. A splitting region merging approach 
has only rare or virtual applications since the concept 
of adding points is nothing else but region growing. As 
previously mentioned, the main difference between 
region splitting and region merging lies in how the 
processing is carried out. Region splitting uses a 
compatible region having suitable properties, whereas 
the region splitting method takes advantage of a 
unified region. In medical applications, either the 
region splitting or the region merging paradigm is used 
as an essential or dominant strategy. The traits of 
medical imaging, for instance, spatial ambiguity, the 
coexistence of multi-object shape, shape delineation 
difficulties, noise, contrast agents, and lesion overlap, 
as well as the appearance of an object surrounded by 
interior noise, prevent the direct use of older 
techniques. Region splitting is known sometimes for 
its lack of steering ability and potential under- or over-
segmentation interior noise. In practical medical 
applications, certain MRGS approaches, particularly 
multi-atlas methods, are known to be quite effective. 
However, these methods also tend to require the 
selection of a number of regions or clustering regions 
used as seeds. Many of these approaches are not 
unsupervised methods. The regional techniques 
effectively segment objects on three medical imaging 
modalities: CT scans, histology sections, and in vivo 
retinal fundus images. It is worthy of note that this 
type of segmentation can also be used to segment 
homogeneous objects in UBM series [40][42][43]. 

2.3. Edge-based Segmentation 
Edge-Based Segmentation: These techniques 

detect the intensity changes that mark the boundaries 

between tissues in images. The edge generally 
represents the exterior of the structure, intrinsically 
providing information on object position. Moreover, 
the edge is a one-dimensional information that is 
extracted by reducing the data from two-
dimensional/three-dimensional to one-dimensional. 
In edge-based techniques, various methods exist to 
determine edges, such as gradient-based methods, 
gradient + operator based methods, the second 
derivative method, and the Laplacian of Gaussian 
operators. These features perform either selective 
enhancement of edges or decrease noise based on a 
filter implementation. The differentiation is suitable 
for detecting edges from complex textured medical 
images with delicate features. It also highlights edges 
irrespective of the objects being imaged [44]. 

However, these individual methods are sensitive to 
the noise in the entire image, which may cause the 
detection of false boundaries when applied to low-
contrast medical images. Edge-based methods are 
preferred for anatomical structure delineation, 
contributing to the development of anatomical 
segmentation in medical images. To improve the 
robustness of edge-type segmentation, the general use 
of hybrid approaches that unite an edge concept with 
other techniques is gaining ground. In many medical 
segmentation-related works, the edge histogram is 
employed to elucidate the pixel spreading and form. 
Concepts of edge used on the basis of the vertices in 
such techniques were put forth. These are different 
from the gradient-based edge detectors that first locate 
differentials and then detect their change of sign. In 
the Bookstein operator, the edge is disclosed by 
morphing a ring around the chosen vertex. Moreover, 
the percentage of the ring that is significantly made up 
of the boundary is determined based on the intensity 
of the local feature statistics. 

Many approaches to medical image registration 
have utilized edge-based techniques. An edge-based 
registration technique was developed to classify 
human vertebrae in magnetic resonance images, which 
included edge detection and closed boundary analysis. 
Today, gradient computation is considered to improve 
the steep contrast between the intensity of adjacent 
pixels. Gradients or after differentiation aligned to the 
desired directions are measurements of local edge 
strength, where edges are highly noticeable. Some 
landmark edge detection methods that use gradient 
computation only for the localization of the edges are 
the Gaussian first-order derivative, Laplacian of 
Gaussian, Canny edge detector, and Sobel edge 
detector. 

Table 1 provides a comparison of Threshold-
Based Segmentation, Region-Based Segmentation, and 
Edge-Based Segmentation methods used in medical 
image processing. The table highlights key aspects, 
including their approaches, performance, robustness, 
and limitations. 

Table (1): Comparison between Threshold-Based 
Segmentation, Region-Based Segmentation, and 

Edge-Based Segmentation 
 

Aspect 
Threshold-

Based 
Region-
Based 

Edge-
Based 
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Segmentati
on 

Segmentat
ion 

Segmentati
on 

Key 
Approach 

Segments 
based on 

pixel 
intensity 
values. 

Groups 
pixels/regio
ns based on 

similarity 
criteria 
(e.g., 

intensity, 
texture). 

Detects 
boundaries 
based on 
intensity 

gradients or 
differences. 

Examples 

Global 
thresholding
, Adaptive 

thresholding
, Otsu's 
method. 

Region 
growing, 
Region 
splitting 

and 
merging, 

Watershed. 

Sobel, 
Canny, 

Laplacian 
operators. 

Performance 

Effective for 
high-

contrast 
images. 

Works well 
for images 

with 
homogenou

s regions. 

Effective for 
well-defined 
boundaries. 

Computatio
nal 

Complexity 

Low; simple 
algorithms. 

Moderate; 
depends on 
the size of 
the region 

and 
similarity 
checks. 

Moderate to 
high; edge 
detection 

algorithms 
can be 

computation
ally 

expensive. 

Robustness 
to Noise 

Low; 
sensitive to 
noise and 

variations in 
intensity. 

Moderate; 
may fail if 

noise 
disrupts 
region 

homogeneit
y. 

Low; edge 
detection is 

highly 
sensitive to 
noise and 
artifacts. 

Data 
Requirement 

No training 
data 

required; 
relies on 

fixed 
intensity 

thresholds. 

Requires a 
seed point 
or initial 
region as 

input. 

No training 
data 

required; 
works 

directly on 
image 

gradients. 

Adaptability 

Poor; 
manual 

adjustment 
needed for 
different 
images. 

Moderate; 
region 

criteria can 
be 

modified. 

Moderate; 
edge criteria 

can be 
tuned. 

Ease of 
Implementat

ion 

Very simple; 
requires 

basic image 
processing 
knowledge. 

Requires 
more 

expertise to 
set region-
growing 
criteria. 

Moderate; 
edge 

algorithms 
are 

straightforw
ard but 
require 
gradient 
tuning. 

Applications 

Skull 
stripping, 

simple organ 
segmentatio

n. 

Organ or 
tissue 

segmentatio
n with 

consistent 

Boundary 
detection in 
anatomical 
structures 

(e.g., blood 

intensity 
ranges. 

vessels, 
tumors). 

Limitations 

- Struggles 
with 

overlapping 
intensity 
values. 

- Fails in 
noisy or 

low-contrast 
images. 

- Sensitive 
to initial 

seed 
selection. 
- Over-

segmentatio
n or under-
segmentatio

n is 
common. 

- Poor 
performance 
with blurry 

edges or 
complex 
textures. 

- Requires 
post-

processing 
to refine 
edges. 

Advantages 

- Easy to 
implement. 
- Fast and 

computation
ally efficient. 

- Captures 
spatial 

coherence. 
- Can adapt 

to 
heterogene
ous regions. 

- Identifies 
sharp and 

well-defined 
edges. 

- Effective 
for high-
contrast 

boundaries. 

 

3. Machine Learning-Based Methods 
In these methods, rather than using predefined 

rules, the algorithm has to learn any information that 
is present in the input data and can also learn from the 
derived features using lower-level features. The 
information in the data can be visual, textual, or in the 
form of multimedia. The performance of the machine 
learning algorithms mainly depends on the knowledge 
representation of the information, the type of learner, 
and the search strategy used for learning from the 
input data. Neural networks provide systems with the 
power of the brain and are used for a large amount of 
data [45][46][47]. The learning system has to pass 
through four stages: input of sensory data to the 
learning system, passing the signal through the layers 
of the learning system, passing the output of the 
learning system for decision making, and feedback 
signal of decision making to the learning system. In 
traditional approaches, images are mainly processed 
using methods from mathematics and physics. 
However, one of the main issues with the traditional 
approach is that when we perform segmentation using 
traditional image processing algorithms on complex 
datasets, like medical images, which may include 
tumors, lymph nodes, or many types of biological 
areas, there is no defined set of rules for each of the 
areas in the images. In this case, machine learning can 
map the input image to the output image. In other 
words, it learns the segmentation rules implicitly 
[48][49][50]. Based on the amount of supervision 
required, these algorithms are classified into three 
types: Supervised learning, Unsupervised learning, 
Semisupervised learning [51]. 

3.1. Supervised Learning 
In this subsection, we will provide an overview of 

supervised learning methods in medical image 
segmentation. According to whether the training 
process uses annotated samples, supervised methods 
can be classified as supervised learning algorithms or 
weakly supervised learning algorithms. A labeled 
dataset is essential during the training process of 
supervised learning methods. In the representational 
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space, the main advantage of supervised learning 
algorithms over unsupervised learning techniques can 
be witnessed through the periodic adjustments, 
conciliation processes, and regularization of the cost 
function. These procedures seek to further decrease 
segmentation error, moving from local minima. From 
what has been mentioned above, it becomes apparent 
that the most important and sensitive module in the 
process of supervised image segmentation is the 
learning module. Given sufficient training data, the 
algorithm can accurately learn image features that can 
distinguish between distinct organs, tissues, and cells. 
Nonetheless, precise learning methods necessitate the 
use of ground-truth annotated images. 

Supervised learning data can be represented as 
pairs of input-output samples. In this case, the input is 
represented by I, where n refers to the number of 
voxels. Each voxel has m-dimensional feature vectors 
that correspond to it; that is, where x and L represents 
the number of object classes. Supervised learning 
algorithms use ground-truth data from the given 
training images to estimate an optimal function. 
Suppose the function is defined as f(I, θ) and 
represents the mapping function from input features 
to class labels. The f(I, θ) uses parameterization to 
represent the function, including θ. The method finds 
the best possible parameters to minimize the output 
error. The learning method requires a training volume 
with a boundary-spaced region to understand and 
learn different information. Several supervised 
classifiers, such as support vector machines, decision 
trees, assignment methods, relevance vector machines, 
nearest-neighbor algorithms, and random forests, can 
perform the pixel-wise classification process in 
medical image segmentation [52][53][54]. 

3.2. Unsupervised Learning 
Unsupervised learning includes methods used for 

training unlabeled data. It can identify patterns in input 
data based on the intrinsic structure of the data 
distribution. Since no labeled samples exist to guide 
the training process, unsupervised learning is useful 
when no prior information about the distribution and 
statistical properties of the data is available. 
Segmentation can be considered an unsupervised 
learning problem, as it often aims at defining the 
clusters of pixels or voxels in the image. Several 
clustering methods have been proposed and applied to 
medical image segmentation, such as k-means and 
hierarchical clustering [55][56]. 

Unsupervised learning carries several advantages, 
ranging from the ability to extend predictions to new 
data that have not been previously annotated to a 
negligible human effort for data annotation. Yet, 
challenges remain, which mainly stem from ambiguity 
in the results and the choice of an appropriate distance 
metric or a valid calibration of model hyperparameters, 
such as the number of clusters. It can be seen, 
therefore, how unsupervised learning tries to find a 
balance between exploring unknown behaviors in the 
data and explaining still unknown patterns that could 
lead to a better representation of the system under 
study. The possibility to explore hidden structures, if 
used as a feature, allows clinicians to hypothesize the 
characteristics and the clinical presentation of the 

subjects involved in the study. Case studies are now 
presented, encompassing unsupervised techniques to 
segment medical images for distinct applications 
[57][58]. 

Since clustering without feature engineering is 
becoming a basis of segmentation networks, the role 
of unsupervised learning will mature in the coming 
years. This holds for the rapidly evolving omics fields 
and neuroimaging where such large amounts of data 
are recorded and the discovery of patterns is 
consolidated. 
3.3. Deep Learning 

Deep learning, which is the most rapidly advancing 
technique in recent years, has greatly improved the 
performance of medical image segmentation methods. 
Convolutional neural networks are foundational 
models in processing and segmenting complex medical 
data. They are capable of learning the hierarchical 
features of the image in a data-driven manner, with a 
larger depth and many more parameters than 
traditional machine learning models. Deep learning 
has many advantages, such as its ability to perform 
feature learning automatically from raw input data, 
which significantly reduces the need for manual 
feature extraction. Moreover, the end-to-end approach 
used in deep learning also improves the efficiency of 
model development. Compared with traditional 
machine learning methods, deep learning has superior 
performance in image segmentation [59][60]. 

With the development of deep learning, many 
state-of-the-art network architectures in medical image 
segmentation have been proposed. The U-Net 
architecture, designed with skip connections and used 
for various medical image segmentation tasks, is one 
of the most well-known. Inverted-Net, SegNet, and V-
Net are other architectures that have shown state-of-
the-art performance when used in medical image 
segmentation tasks. In addition, with the challenge of 
insufficient labeled medical data, the integration of 
transfer learning with deep neural networks has helped 
improve learning performance. Similarly, adversarial 
training is also a data augmentation technique that has 
shown promising results. Despite their powerful 
advantages, there are still some challenges with deep 
learning-based medical image segmentation methods. 
It typically requires plenty of segmentation data with 
manual annotations to train the network. Moreover, 
deep learning with its "black-box" characteristics may 
not be suitable for some medical applications, where 
interpretability is very important. Because of this, 
generating methods and models, such as deep learning 
decision trees and attention maps, have been 
highlighted as promising future research topics [61].  
3.3.1 U-Net 

U-Net is a convolutional neural network (CNN) 
specially designed for biomedical image segmentation. 
It is composed of a contracting path (encoder) that 
captures context, and an expanding path (decoder) 
that enables precise localization. Skip connections 
between corresponding encoder and decoder layers 
keep spatial information intact and it is particularly 
suitable for small and convoluted structures like 
tumors or vessels. 
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3.3.2 Fully Convolutional Networks (FCN) 
Instead of utilizing classical fully connected layers, 

FCNs substitute convolutional layers, allowing input 
images with a variable size. These types of neural 
networks employ an encoder-decoder structure similar 
to U-Net but usually do not include skip connections 
resulting in less performance for pixel-wise 
segmentation (detailed smal image segmentation 
tasks). 
3.3.3 DeepLabV3+ 

DeepLabV3+ builds further on the details of 
FCNs and includes atrous (dilated) convolutions to 
extract multi-scale contextual information without the 
cost of a computational increase. The model also has 
an enhanced decoder module that adapts well to 
complex medical images with multiple textures and 
structures. 
3.3.4 Attention U-Net 

Attention U-Net adds attention mechanisms to a 
standard U-Net, allowing the model to attend (focus) 
on relevant regions while ignoring (suppressing) that 
which is irrelevant. The method also really shines in 
tasks that require segmenting small targets or targets 
that vary in shape. 
3.3.5 Vision Transformers (ViTs): Segmented 
Generations 

Using self-attention mechanisms, ViTs are able to 
model long-range dependencies and are therefore 
effective for medical image segmentation tasks that 
require contextual awareness. ViTs differ from the 
conventional CNNs which are local receptive fields in 
the sense that they are capable of capturing more 
global features from input images. TransUNet is an 
example of a Transformer-based model that can 
combine CNN-based encoders with transformer-
based decoders to leverage local and global 
representations. 

In summary, the following figure 1 illustrates the 
machine learning-based segmentation pipeline steps. 

In this manuscript, we compared in different 
aspects the medical image segmentation techniques 
available in the literature and discussed their pros and 
cons. Traditional (threshold based, region based, edge 
based) segmentation methods are simple, 
computationally efficient, and interpretable. 
Threshold-based approaches work well for high-
contrast images but perform poorly in noise and need 
to be exact for the threshold selected. Region-based 
methods have good performance on homogeneous 
regions, are more robust to noise, but can be 
computationally expensive and sensitive to seed point 
selection. 

 
Figure (1): Block diagram of machine learning-based 

segmentation pipeline. 

The Table2 below compares traditional-based, 
machine learning-based, and deep learning-based 
approaches in several key aspects: 

 
Table (2): Comparison between traditional-based, 
machine learning-based, and deep learning-based 

approaches in several key aspects: 

Aspect 
Tradition
al-Based 
Methods 

Machine 
Learning-

Based 
Methods 

Deep 
Learning-

Based 
Methods 

Key 
Approach 

Uses image 
intensity, 

regions, or 
edges for 

segmentati
on. 

Learns 
from 

handcrafted 
features to 

classify 
pixels or 
regions. 

Learns 
features 

automatically 
from data 

using neural 
networks. 

Examples 

Thresholdi
ng, Region 
Growing, 

Watershed, 
Clustering. 

Support 
Vector 

Machines 
(SVMs), 
Random 
Forests, 
Markov 
Random 

Fields 
(MRFs). 

U-Net, Fully 
Convolution
al Networks 
(FCNs), 3D 

U-Net, 
Vision 

Transformer
s. 

Feature 
Extraction 

Manual 
(intensity, 
gradients, 
texture, 

etc.). 

Handcrafte
d features 
(intensity, 

shape, 
texture). 

Automatic 
through 

deep neural 
network 
layers. 

Performance 

Moderate 
for simple 
structures 
and high-
contrast 
images. 

Improved 
accuracy 

with 
meaningful 
handcrafted 

features. 

High 
accuracy, 

especially for 
complex and 

large 
datasets. 

Computatio
nal 

Complexity 

Low to 
moderate. 

Moderate. 
High 

(requires 
GPUs and 
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large 
memory). 

Data 
Requiremen

t 

Minimal; 
works well 

with 
limited or 
no training 

data. 

Moderate; 
needs 

annotated 
data for 
training. 

High; 
requires 

large, 
annotated 
datasets. 

Robustness 
to Noise 

Low; 
sensitive to 
noise and 
artifacts. 

Moderate; 
depends on 
the features 

used. 

High; can 
learn robust 
features with 

proper 
training. 

Generalizati
on 

Poor; 
depends 

on 
manually 

set 
parameters 

Moderate; 
generalizes 

with 
sufficient 
features 
and data. 

High with 
proper 

training and 
augmentatio

n. 

Adaptability 

Low; 
requires 
manual 

adjustment
s for new 

tasks. 

Moderate; 
needs 
feature 

engineering 
for new 
tasks. 

High; 
retraining 

can adapt to 
new tasks. 

Ease of 
Implementa

tion 

Simple; no 
specialized 
expertise 
needed. 

Moderate; 
requires 

expertise in 
feature 
design. 

Complex; 
requires 

expertise in 
deep 

learning 
frameworks. 

Applications 

Basic tasks 
like skull 
stripping, 

organ 
segmentati

on in 
simple 
cases. 

Segmentati
on of 

organs, 
vessels, or 

tumors 
with 

moderate 
complexity. 

Tumor 
detection, 

organ 
segmentatio
n, real-time 
segmentatio

n, and 
multimodal 

tasks. 

Limitations 

- Fails for 
complex 

structures. 
- Sensitive 
to image 
artifacts 
and low 
contrast. 

- Requires 
extensive 
feature 

engineering 
- Struggles 
with high-

dimensiona
l data. 

- Requires 
large 

annotated 
datasets.- 

Computatio
nally 

expensive. 

Advantages 

- Simple 
and 

interpretab
le. 

- Low 
computatio

nal cost. 

- Balances 
complexity 

and 
interpretabi

lity. 
- Good for 

smaller 
datasets. 

Automaticall
y learns 

hierarchical 
features.  

- Best 
performance 
for complex 
segmentatio

n tasks. 

 
While edge-based techniques work well for images 

that have boundaries with strong edges, they are not 
robust to weak edges or retinal edges and typically 
need pre-processing for high performance. 

Modern methods like machine learning based 
techniques and deep learning-based techniques 

achieve quite high segmentation accuracy and 
generalization capabilities. Although more accurate 
than traditional methods, machine learning-based 
methods need manual feature extraction and depend 
too much on the quality of labeled data. To address 
these limitations, deep learning–based methods learn 
complex patterns and features automatically and can 
be used to achieve high accuracy and scalability in PPI 
prediction. However, these algorithms are 
computationally expensive and need large annotated 
datasets to train on and provide limited interpretability. 

This comparative analysis shall offer readers a 
straightforward insight into the trade-offs with regard 
to making segmentation methods choices across 
various medical imaging tasks. 

 
4. Case Studies 

This paper illustrates the continuum of range that 
exists between medical image segmentation methods, 
from thresholding to deep learning based techniques 
through three case studies. Depending on the imaging 
modality, data quality, and clinical requirements, each 
method has its advantages and disadvantages. It will 
further pave the way to more accurate, automated, 
and efficient solutions that would be a great help to the 
healthcare field. 

4.1 Case Study I:  Lung nodule Detection in 
CT-scans based upon Thresholding and 
Region Growing technique 
Problem Statement: Lung cancer is a major cause of 
mortality globally, and timely identification of lung 
nodules can greatly enhance patient outcomes. 
Segmenting lung nodules from CT scans aids 
radiologists in pinpointing and monitoring these 
entities for additional assessment. 
Methodology: A hybrid approach which employed a 
region growth and thresholding for segmenting lung 
nodules Discovery and iterative region growing were 
used to refine the results. First, to segment the lung 
area from the background, thresholding is applied 
and then lung nodules are detected and segmented 
using region growing methods. Thresholding is useful 
to filter out irrelevant tissue, and region growing is 
beneficial to refine the boundaries of the nodules. 
Results: The average sensitivity of detection of lung 
nodule using the proposed segmentation approach 
was found to be 92%. Moreover, the method supplied 
89% accurate nodules segmentation, which was 
enough for further analysis by the radiologists. Using 
this hybrid approach, the detection is not only real-
time but also takes less than 10 seconds to process 
each scan. 
Pros: The method produced good results on datasets 
that contained well-defined lung nodules;  
Cons: The approach was poor on small and/or 
irregularly shaped nodules, sometimes leading to false 
negatives. Also, we found that artifacts such as motion 
blur or metal implants affected the segmentation 
accuracy [62][63][64], figure 2 shows Lung nodule 
segmentation before and after processing 
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Figure (2): Lung nodule segmentation before and 

after processing.  

4.2 Case Study II: Deep learning based 
Brain Tumor Segmentation:  
Problem Statement: Brain tumor detection and 
segmentation is of utmost importance for diagnosis, 
treatment planning and post surgical evaluations. The 
precise segmentation can assist with delineating the 
tumor boundary, identifying the type of tumor, and 
tracking the tumor advancement over time. 
Method: Recently, deep learning methods, especially 
convolutional neural networks (CNN), have achieved 
promising results for brain tumor segmentation using 
MRI scans. One prominent method is by leveraging a 
3D U-Net architecture that employs both patch-level 
and whole-image features for tumor detection. 
Annotated datasets like BRATS (Brain Tumor 
Segmentation) dataset containing diverse MRI images 
with tumor annotations are used to train the U-Net. 
Results: The 3D U-Net was able to achieve state-of-
the-art performance for glioma segmentation, with an 
average Dice similarity coefficient (DSC) of 0.85, 
demonstrating a strong overlap between the predicted 
and ground-truth tumor regions. It was also able to 
differentiate tumor types, such as glioblastoma 
multiforme (GBM) from lower-grade gliomas, refining 
the ability to personalize treatment. 
Challenges: The inconsistency between MRI scans 
(e.g., noise, resolution, and artifacts) made it difficult 
to achieve consistent outcomes. Also, training and 
deploying the model were limited by the dataset size 
as well as the high computational resources needed 
[65][66][67], figure 3 shows the brain tumor 
segmentation before and after processing. 

 
Figure (3): The brain tumor segmentation before 

and after processing 

4.3 Case Study III: Graph Cuts for Retinal 
Vessel Segmentation 
Problem Statement: Retinal vessel segmentation is 
critical for the diagnosis of diabetic retinopathy, 
glaucoma, and other vascular diseases. Accurate 
segmentation of the vessels is important to detect 
pathological changes in the retina. 
Methodology: Because graph cut-based segmentation 
methods enable to formulate the problem as an 
energy minimization problem, the methods have been 
applied for retinal vessel segmentation. This Graph-
convolutional neural network for image segmentation 
based is heremade in: to use each pixel in an image as 
a node and connect them via edges weighted by some 
similarity based on learned features to determine 
whether the node belongs to the image vessel. Then, 
a min-cut algorithm is used to separate the vessels 
from the background. 
Results: Graph cut based methods performances are 
high with an average DSC of 0.88 in the DRIVE 
(Digital Retinal Images for Vessel Extraction) dataset. 
Our proposed method achieved the best segmentation 
results, especially on narrow and small vessels, which 
are generally ignored by traditional techniques. 
Challenges: Introduction of a method for 
segmentation of retina images with a background-less 
green channel-based brain image acquired using a 
stereo-vision-eye-based retinal IMU in those multiple 
images. A direct implementation of graph cuts is quite 
expensive computationally, however, which need be 
optimized for use in clinic [68][69][70], figure 4 shows 
retinal vessel segmentation before and after 
processing. 

 
Figure (4): Retinal vessel segmentation before and 

after processing 
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5. Evaluation Metrics 
Several new algorithms are constantly being 

developed for quantitative medical image 
segmentation, but no definitive standard for accuracy 
exists. It is crucial to quantify segmentation results for 
reliable clinical use. Common evaluation metrics 
include outlier tolerance percentage, regional error 
rate, segmentation similarity, localization distance, 
grayscale distance, and classification accuracy [71][72]. 
Evaluation metrics for medical image segmentation 
are essential to quantify the performance of 
segmentation algorithms. Several metrics evaluate 
medical image segmentation based on the accuracy of 
predictions compared to ground truth segmentations. 
Metrics can be broadly divided into overlap-based 
metrics, metrics focused on capturing the boundaries 
of the segmentation mask, and clinical validation 
protocols to ensure downstream usability. 

5.1 Overlap-Based Metrics (Region 
Similarity) 
5.1.1 Dice Similarity Coefficient (DSC) 

The Dice coefficient represents the ratio of twice 
the intersection area of the manually segmented 
reference and the automatic segmentation image, over 
the sum of the manually segmented reference and the 
automatic segmentation image [73][74]. 
• Calculates the spatial overlap between the 

predicted segmentation and the ground truth  

• Ranges between 0 (smallest overlap) and 1 (best 
match). 

• Mostly implemented in medical image 
segmentation (e.g. brain tumor segmentation on 
MRI scans) and DSC formula is given as follow: 

DSC=2∣A∩B∣ / ∣A∣+∣B∣ 
5.1.2 Jaccard Index (Intersection over Union, 

IoU) 
The J-index calculates the overlapping ratio over 

twice the area of the reference image minus the area of 
the automatic segmentation. Both the DICE 
coefficient and the J-index range from 0 to 1, where 0 
indicates no overlap and 1 indicates a perfect match. 
They are directly linked to the quality of segmentation. 
Some researchers prefer to analyze the inverse Dice, 
so that the higher the result, the better the matching of 
the areas in the input images. The DICE coefficient, 
the J-index, sensitivity, and specificity reflect different 
contents of binary objects and different metrics. 
Manual and partial thresholding evaluation cannot 
provide a comprehensive judgment of image 
segmentation results [75][76][77]. 

• Tanimoto coefficient also goes under this name 
and gives a stricter measure than DSC. 

•  IoU is less than DSC for identical segmentation 
mask, since it is punish oversegmentation. 

•  Applied in tasks such as lung nodule 

segmentation in CT images and IoU formula is 
given as follow: 

IoU=∣A∩B∣ / ∣A∪B∣ 
The DICE coefficient is commonly used to 

evaluate glossary or partial segmentation. While 
sensitivity and specificity values are calculated to 
assess, they do not fully capture the segmentation 

result and data reliability. To thoroughly evaluate the 
segmentation result of a medical image in various 
scenarios, a comprehensive analysis and comparison 
of basic evaluation methods, single evaluation 
methods, and data reliability is essential [78][79][80].  

5.2 Boundary Focused Metrics  
Overlap-based metrics are agnostic to the exact 

match of a segmented region's boundary to the actual 
object's edge. Boundary metrics are a more direct 
measure of segmentation because they only take into 
account contours. 

5.2.1 Hausdorff Distance (HD) 
Computes the maximal distance of the border 

between predicted (𝑒𝑡) and our reference (𝑔𝑡) 
segmentations. 

• Sensitive to outliers and erratic segmentations 
(i.e., when the segmentation contains false 
positives that are far away from actual boundary). 

• Lower HD, indicates better segmentation 
performance. 

• In common use in tumor segmentation, where 
precise boundaries are particularly important for 
surgical planning . 

5.2.2 Average Hausdorff Distance (AHD) 

• A variant of HD that is less sensitive, by 
averaging the distances instead of taking the 
worst-case value. 

• When the HD metric may be impacted by a 
couple of extreme outliers. 

5.2.3 Average surface distance (ASD) 

• Average error of the predicted segmentation 
boundary with respect to the ground truth 
boundary 

• HD more sensitive to small boundary changes. 

• Commonly used for cardiac segmentation to 
evaluate the boundaries of the heart chambers. 

5.2.4 BF Score — Boundary F1 Score 

• Calculate PR balance at object boundary 

• Helpful in vascular segmentation where edge 
precision is important (e.g., retinal vessel 
segmentation) 

5.3 Clinical Validation Protocols for 
Segmentation Models 

Besides thorough algorithmic evaluation, there is 
need for rigorous clinical validation of medical 
segmentation models before they enter real-world 
usage. To guarantee an application in the real world, 
segmentation models are clinically validated by testing 
in multi-center datasets, assessment of interobserver 
variability, prospective clinical trials, and regulatory 
approvals. Models should be tested on heterogenous 
datasets to assess generalisation in multiple imaging 
modalities and patient populations. Reliability of AI-
Based Mammogram Breast Segmentation System. Real 
world use cases are confirmed in clinical trials that test 
AI performance in real life, assessing time savings, 
accuracy gains and implications for impact on patient 
outcomes. Moreover, regulatory approvals (FDA, CE 
certifications) are essential to validate compliance with 
medical devices standards and ethical implementations 
in clinical environments. 

A suggestion to generalize sensitivity, accuracy, 
precision, F-measure, and the Matthews correlation 
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coefficient has been put forward. Since these 
parameters alone can be misleading, using a 
combination may enhance judgment reliability. The 
proposed evaluation metrics are suitable for 
determining the presence of pathological tissue or 
physiological function. It is crucial to ensure these 
metrics are compatible with the standard. There is a 
need to address limitations in the future and test the 
practicality of the proposed evaluation metrics. 
Additionally, evaluating and differentiating disease 
grade levels and subregions remains open for future 
research [81][82][83]. Table 3 provides an overview of 
metrics and validation techniques. 

Table 3: provides an overview of metrics and 
validation techniques. 

Category 
Metric/Meth

od 
Descriptio

n 
Use Case 

Overlap-
Based 

Metrics 

DSC (Dice 
Similarity 

Coefficient) 

Measures 
overlap 
between 

prediction 
and ground 

truth 

Brain tumor 
segmentatio

n 

 Jaccard Index 
(IoU) 

Stricter 
overlap 
measure 

than DSC 

Lung nodule 
segmentatio

n 

Boundar
y-

Focused 
Metrics 

Hausdorff 
Distance (HD) 

Measures 
worst-case 
boundary 

error 

Surgical 
tumor 
margin 

assessment 

 

Average 
Surface 

Distance 
(ASD) 

Measures 
average 

deviation 
from 

ground 
truth 

boundary 

Cardiac 
segmentatio

n 

 
Boundary F1 

Score (BF 
Score) 

Assesses 
boundary 
precision 

Retinal 
vessel 

segmentatio
n 

Clinical 
Validatio

n 

Multi-Center 
Dataset 
Testing 

Trains 
models on 

diverse 
datasets 

Generalizati
on check 

 Interobserver 
Variability 

Compares 
AI with 
multiple 

radiologists 

Consistency 
validation 

 Prospective 
Clinical Trials 

Evaluates 
real-world 
deploymen

t 

AI impact 
assessment 

 Regulatory 
Approval 

Follows 
FDA, CE, 
and ISO 
standards 

Ensures 
compliance 

 

6. Challenges and Future Directions 
Medical image segmentation has many existing 

challenges, of which rapid growth is recorded in recent 
years. Several challenges are already identified and 
prominently noted, such as flexibility to different 

imaging modalities, deep and varying anatomical 
structures, manual handling of data due to complexity, 
performance assessment, cross-comparison, practical 
and clinical significance, statistical significance, and 
validation possibility. Complex techniques like shape 
modeling and prior anatomical knowledge are often 
used to meet these challenges. Furthermore, manual 
reviewing of large volumes of medical image data is 
time-consuming and causes fatigue and loss of 
accuracy; hence, medical experts need automated tools 
to do the job more rapidly and accurately. 
Consequently, designing such a system is difficult due 
to the enormous diversity of medical imaging data. 
They are complex, expensive, and time-consuming to 
obtain, and may exhibit numerous artifacts due to 
equipment limitations, patient motion, or poor 
coordination. Improving the accuracy and efficiency 
of medical image analysis and the diagnostic process 
has led to the development of medical image 
segmentation techniques to analyze or review medical 
images. Gradually, the application of cutting-edge 
computational technologies in medical image 
processing is emerging as a potential healthcare 
provider. 

However, medical image segmentation is a 
significant step and key enabling technology in many 
computerized diagnostic procedures and medical 
disciplines. It plays a significant role in delivering 
accurate and efficient outcomes, and with automated 
computerized and quantitative analyses, it allows the 
objectivity and reproducibility of clinical 
measurements of anatomy and physiology. With such 
measures, a virtual patient may arise, including 
quantification and statistical analysis of normally and 
abnormally located anatomy and physiology, 
representing important knowledge in large-scale 
medical databases. Consequently, this knowledge is 
available to be used as informative tools for data 
mining and network collaboration, without 
reexamination of patients.  

There are numerous challenges in medical image 
segmentation, and many of these challenges has 
gained increased attention with the rapid growth in 
imaging technologies and computational techniques. 
Challenges such as respect to active learning need to 
be considered here, and additional challenge of this 
problem can be listed as adapting to different imaging 
modality behaviors, the jagged and heterogeneous 
character of the data for example in the case of the 
anatomy, and the manual cost because the enormous 
intricate cooks of the medical imaging data. Moreover, 
questions regarding performance assessment, cross-
comparison, statistical validation, as well as, practical 
and clinical relevance are still paramount issues. 

6.1 Addressing Data Scarcity 
Data scarcity is one of the most pressing 

challenges, which results from needing large amounts 
of high-quality, annotated datasets of images in areas 
where it is expensive, by medical experts who can 
annotate them, and where patient privacy hampers our 
ability to collect enough data. Novel techniques are 
solving this problem with data augmentation 
approaches that create synthetic diversity of the 
existing data. Transfer learning is also a promising 
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method, wherein existing models previously trained on 
related tasks are fine-tuned on a limited number of 
medical datasets, offering a substantial reduction in 
the requirement for large-scale labeled data. 
Furthermore, generative adversarial networks (GANs) 
approaches help in illustrating the promise of synthetic 
data generation, where realistic and diverse datasets 
can be synthesized for training to overcome 
challenges faced in data scarcity. 

6.2 Improving Noise Sensitivity 
Medical images are often noisy due to artifacts 

introduced during imaging, including patient 
movement, equipment constraints, or sub-optimal 
circumstances. Recently, many improved models 
address the lap of noise robustness by noise-aware 
training mechanisms and robust loss functions. For 
instance, models are now explicitly trained to identify 
and treat noise in the input (gathered) data. 
Furthermore, denoising algorithms, commonly based 
on deep learning methods, have been incorporated 
within segmentation pipelines to improve the quality 
of input data and thus enhance segmentation accuracy 
and reliability. 

6.3 Future Directions 
Here are few avenues of exploration and 

breakthroughs to consider that could help to push the 
field forward: 
1. Collaborative training with federated learning 

Meanwhile, federated learning in the presence of 
multiple institutions enables the collaboration of 
model training for segmentation without directly 
distributing raw data, which avoids privacy concerns 
and provides access to heterogeneous data across 
institutions. This technique could ultimately improve 
model generalizability and do so while preserving 
patient privacy. 
2. Fusion of Multimodal Imaging Data 

Combining data from multiple imaging modalities 
(CT, MRI, PET, etc.) provides a more comprehensive 
view of anatomical and pathological properties. In 
latent spaces of multiple modalities, the strengths of 
one modality can compensate for the weaknesses of 
another. Exploratory methods can learn 
simultaneously different modalities that can express 
complementary information, which makes 
complementary information can obtain better 
segmentation precision. 
3. Building on Generative AI Models 

They are developing into new pathways to 
generate realistic high-fidelity medical images and 
segmentation through generative models, including 
GANs and diffusion models. These models can help 
in data generation, augmentation, and even directly 
perform segmentation tasks. 
4. Recent Clinical Applications of Real-Time 

Segmentation 
Advances in computational hardware and 

optimization techniques are allowing for real-time 
segmentation systems. These systems might enable 
clinically useful time-sensitive applications that 
currently require intraoperative imaging to visualize 
targets without mobilizing the sensors while needing 
quick segmentation of the distance between targets. 

5. Adaptability, explainability and 
interpretability 
As machine learning systems grow in 

sophistication, there is an increasing demand for 
explainable AI (or XAI) techniques. XAI can be 
incorporated in segmentation pipelines to understand 
model prediction on the input image which helps 
medical practitioners to trust the predictions made by 
the model. 

 

7. Discussion and Conclusion  
In this comprehensive review article, we present a 

detailed and thorough summary of the various 
methods that have been devised for medical image 
segmentation. The field of image segmentation offers 
a range of techniques, which can broadly be classified 
into two categories: mathematical models or 
algorithms based on learning methods. Learning 
methods, in turn, can be further categorized as either 
supervised or unsupervised learning. Additionally, 
segmentation methods can also be influenced by the 
nature of the imaging type, especially in the case of 
medical imaging. Moreover, in this article, we aim to 
address the segmentation problem from different 
perspectives and scales. We explore global 
segmentation techniques, which focus on capturing 
the overall structure of the image. On the other hand, 
we delve into structural segmentation methods that 
aim to identify and segment specific structures within 
the image. Furthermore, this article delves into 
regional segmentation techniques that aim to isolate 
and segment specific regions of interest within the 
image. Lastly, we explore local segmentation methods, 
which aim to segment smaller, localized areas within 
the image. By thoroughly examining and presenting 
these various methods, this article provides a 
comprehensive overview of the current techniques 
and approaches in the field of medical image 
segmentation. We hope that this summary will 
contribute to further advancements in this vital area of 
medical image analysis.  

The use of medical image segmentation methods is 
crucial due to the increasing need for non-invasive, 
non-radiative techniques. These methods provide a 
meaningful representation of human anatomy and 
physiology, aiding in accurate diagnosis, treatment 
planning, therapy guidance, and non-invasive or 
minimally invasive surgery. Despite challenges like 
noise, intra-slice variation, and missing slices, 
intelligent machine learning and computational 
algorithms address these issues. The goal is to develop 
a method that can effectively handle diversity and 
achieve efficacy, efficiency, accuracy, and robustness 
for use in clinical practice. In healthcare, medical image 
segmentation is critical for boosting diagnostic 
accuracy and tailor treatment strategies. This paper 
gives a detailed description of several segmentation 
methods: classical, those based on machine learning, 
and also those on deep learning. Traditional 
approaches have interpretability and computational 
simplicity, but usually fail with intricate medical 
images and noise. Data-driven techniques based on 
machine-learning for accuracy at the cost of feature 
engineering. Conversely, initial, deep-learning based 
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methods learned to automatically identify complex 
features and patterns, however they were costly and 
also required substantial annotated datasets (or labels) 
to help train the learning machine. 

These advances notwithstanding, many challenges 
remain open. This includes developing segmentation 
models that are robust to noise, adaptive to 
multimodal data, and interpretable for clinical use. 
Additionally, improving upon existing deep learning 
approaches by mitigating their high computational 
demands and overcoming the scarcity of labeled 
datasets will be vital to future advancements. 

Future work includes investigating hybrid 
approaches that leverage the benefits of both 
traditional and modern methods, improving model 
generalizability across diverse imaging modalities, and 
decreasing dependence on having a large corpus of 
annotated data via unsupervised and semi-supervised 
techniques. Furthermore, should focus on light 
weight models for real time applications and ethical 
deployments in clinical settings. 

In highly competitive fields such as medical image 
segmentation a larger number of training datasets can 
lead to lower performance and quality of the results. 
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