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1. Introduction

The development of industries at the present time
has led to the consumption of large amounts of energy.

Abstract

The oil industry has a direct impact on the economic feasibility of
other sectors and is considered to be the most important energy source
used to turn the wheels of other industries. Therefore, it was necessary to
pay attention and continuously develop this industry, to find the best
modern techniques for designing, pre-commissioning and controlling
process, to improve efficiency, preserve energy and achieve the highest
production of costly components with the highest purity of the product.
This study aims to provide a literary analysis of the stages of development
and progress of the dynamics and control of the petroleum industry, in
particular the distillation column, because it is multivariable with high
interaction between control cycles, nonlinear behaviour and large gains.
Control

processes  have developments and

modernizations to achieve the best results. Various control methods have

undergone  many

been used, ranging from simple proportional-integral-derivative controller
(PID) to advanced control strategies such as model predictive control
(MPC), multivariate model predictive control (MMPC), fuzzy logic control
(FLC), quadratic dynamic matrix control (QDMC), artificial neural network
control (ANN) and other advanced control techniques. The authors
concluded from the review that the advanced control strategies superior
than the conventional methods.

Keywords: Modeling and advanced control, Distillation column, Model
Predictive Control, Fuzzy logic control, Artificial Neural Network.
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consumption, especially that produced from oil and

gas, so there must be development and monitoring
processes for optimal energy consumption [1], [2].

This has led to a significant increase in energy
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Crude oil generally consists of thousands of
hydrocarbon and non-hydrocarbon compounds that
vary from low molecular weight to compounds with
very high molecular weight, with different proportions
of paraffinic, naphthenic, and aromatic compounds.
The properties of crude oil depend on the oil well and
the location at which the oil to be extracted, which
makes the stability of the operation of crude oil units
and achieving the specifications of the products
difficult [3].

One of the most crucial procedures in the chemical
process industries is the crude distillation unit (CDU).
The percentage of separation using a distillation
column in the chemical industry wotldwide is
estimated at 95% [4], [5] and [6]. The crude oil initially
must pass through the crude distillation unit (CDU)
before going into the upgrading and developing units.
In that unit, the crude oil submits to physical
fractionation to get many hydrocarbon components
like light and heavy naphtha, kerosene, light gas oil,
heavy gas oil and atmospheric residue [7]. After
passing through several processing stages to turn these
products into more valuable products. The products
go to the blending or pooling stage, where
components are combined to create the final products.
Each cut must have some important quality
requirements like the aromatic and total sulfur content,
viscosity index (VI), red vapor pressure, octane
number, cetane numbert, etc. [8], [9].

The distillation column consists of a vertical
column with trays used to increase the contact area to
improve component separations, a reboiler to supply
heat for the necessary vaporization from the bottom
of the column, a condenser to cool and condense the
vapor from the top and a reflux drum to collect the
condensed vapor so that reflux liquid can be recycled
back from the column. A collection equipment used
for mass transfer or heat transfer [10], [4], [11] and
[12]. The process of distillation of crude oil is
considered as a complex and integrated process, which
represents a major challenge in its work. Therefore,
control and simulation processes have become
important to study the behavior of this type of
important process due to the presence of complex
dynamic interactions between the inputs and outputs
of the process [5], [13]

The system used in the process of controlling the
distillation tower is known as the multiple input and

The transfer function matrix for (SSS) [22] is
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output (MIMO) systems. These systems are
considered more complex and difficult than systems
with a single input and output (SISO) due to
interactions that occur among the variable inputs and
variable outputs [14]. Different approaches are taken
to study the control of the distillation columns. The
impact of interactions between the control loops, the
effect of disturbances, the rejection of disturbances,
the process performance, and the decupling [15], [16],
[17] and [18].

A simulation and experimental study of the control
dynamics of a binary distillation column with a side
stream was carried out. Three compositions were
studied: an upper composition, a lower composition
and a side composition. It was noted that the change
in the flow rate of the side stream was ineffective in
adjusting this stream by changing the location of the
withdrawal tray for the side stream. It gives great
control over the composition of the side stream flow
rate. In addition, closed-loop control of the upper, side
and lower compositions has been achieved in
simulation and experimental studies [19].

The control of a multivariable distillation column
containing an upper product, lower product, and side
product was studied. Multivariable controllers with
multiple time delays were used, combined with
traditional single-loop PI controllers. It was observed
that the performance of this method is better than the
traditional single-loop PI controller, especially in the
process of rejecting disturbance [20], [21].

Alatiqi and Luyben 1986 compared a ternary
mixture distillation process containing a small
percentage of the intermediate distillate (less than
20%) by using a multivariable, complex and interacting
side stream column/strippet distillation configuration
(SSS) Fig.1 was explored via digital simulation, it was
compared quantitatively with the conventional
sequential (light-out-first) two column configurations
(LOF) Fig.2. They found possible to control a
complex (SSS) configuration using four conventional
SISO controllers, and the dynamic response using the
complex SSS system is better than the traditional
(LOF) system. The SSS configuration was controlled
using four conventional PI controllers. The SSS
system's load response was on equal with, if not better
to, that of the traditional (LOF) system [22].
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And for (LOF) [22] is:
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These columns are complex, multi-variable,
interactive, and non-linear; so a new successfully
control scheme was developed by Han and Park
(1993), to solve problems of a non-linear and multi-
variable nature using a nonlinear wave model as a
generic  model control.  Dynamic  simulation
experiments to control these two systems show that
the proposed control scheme can successfully improve
the distillation components [23], [24].

The transfer function matrix for Alatiqi (RR) scheme [25] is

Relative gain array (RGA) and multivariate
Nyquist-Bode schemes were used to adjust the
preferred structures according to the specified load
rejection criterion and the specified robustness for
developed multivariable systems using (SISO) type
controllers, which includes designing control loops
using dynamic and steady state models of the transfer
function type. The best frequency response scheme is
chosen as a result of the resulting disturbances in the
load system [25], [26] and [27].
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(PMBC) and Artificial Neural Networks (ANN). The
results were presented for two cases of disturbance
rejection and set point changes for a Cs splitter
column. It was noted that the (PI) control was similar
to the performance of the (PMBC) control with an
exception in the feed composition, and also the
(PMBC) control is equivalent to the (ANN) control
[28].

A smart and advanced sensor was proposed to
predict the quality of crude oil distillation tower
products. This approach relies on a new real-time
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Figure (2): Basic design for LOF system.

The controlling the distillation column is one of
the important matters to reduce energy consumption
and increase the efficiency of the separation process,
so, a methodology called adaptive predictive expert
(ADEX) control was proposed and the results were
compared with traditional controller (PID) used in oil
refineries. This is done through careful control of the
main towers variables, increasing their stability and
eliminating the interaction between variables to reduce
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the problem of resonance that occurs in distillation
towers when using a controller (PID) Fig.3 [30].
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Figure (3): Process description of the naphtha

splitter.

A predictive control strategy was proposed to
solve the problem of non-linear control of the
multivariable estimation column (4*4). A model
predictive control (MPC) was used to give better
results than traditional control. This strategy was
applied to the (Alatigi and Luyben 4x4 process) and
(Doukas and Luyben 4x4 process) and gave good
results and different from other traditional methods
[31], [32].

Based on the energy balance structure (L-V), a
computational model is presented to model the
distillation and control tower. The reflux rate (L) and
the boiling rate (V) were used as inputs to control the
purity of the upper distillate(Xp) and the impurities
present in the lower product (Xp) as outputs of the
process Fig.4. Modeling and machining were
completed in three stages: the basic nonlinear model
of the plant, the full-order model, and the reduced-
otrder linear model. The reduced-order linear model
used a reference model for a model-reference adaptive
control (MRAC). The process outputs to track
reference control points to ensure the purity and
quality of the product and the presence of disturbances
occurring in the process feed [33].

Coolant flow valve
Vi

Overhead vapor

Rifisatiow Coolant flow Q.
valve V2 Distillate flow

valve V3

N+1
Rectifying | *******t"
section | vuvernnns Reflex rate L Overhead product D, Xp

Feed flow

rate F. X¢ Feed tray

m—bl s
Stripping | ....ieeeee
section
.......... Heat flow valve V4

Reboiler
S ; Heat flow valve V5

Bottom product B, Xg

Figure (4): Distillation flow sheet.
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An improvement in the performance of the model
predictive control (PMC) using a quadratic program
(QP) was studied. The purpose is to control and
economically improve the system. It was applied to a
distillation system and showed effective results. What
distinguishes the proposed approach is that the
predictive control problem can be solved using the
available (QP) tools [34], [35].

The control system based on the non-linear model
(NMPC) used to control distillation columns is
considered one of the best options used for control.
The system (NMPC) was developed using a non-linear
autoregressive model with external inputs (NARX)
and the Unscented Kalman Filter (UKF) was used to
estimate the state variables in (NMPC). The sequential
quadratic programming method (SQP) was used to
solve the non-linear programming problem (NLP).
The results showed that the performance of (NARX
NMPC) in closed loop control was good in tracking
the set point and rejecting disturbances [36].

Khalid M. Mousa, Samer A. Kasim (2010) used
two control systems, decoupling and fuzzy logic
control, after the failure of conventional control. The
control of the side stream distillation column was
studied, and the controlled wvariables were the
composition of the distillate (Xp) and the composition
of the side stream (Xs). The manipulated variables
were the side stream flow rate (Ls) and the reflux flow
rate (R) (the system was modeled by (Alatiqi and
Layben). The fuzzy logic control showed a noticeable
improvement in the system’s response and control,
where the decoupling of variables made the system
more stable [37].

Sivakmar and others (2010), supposed a solution to
the problem of multivariable nonlinearity in the
distillation column was proposed by using a fuzzy
model predictive control strategy (FMOC) that is used
to predict the outputs to control the process, where
using a binary distillation column (Wood and Berry)
and comparing the results between proposed strategy
(FMPC) and conventional control (PID) and show
that (FMPC) gives Better performance than (PID)
[38].

A distillation process of a binary mixture of
methanol and water was studied in a batch distillation
column, where a predictive control model (MPC) was
designed based on theoretical analysis of dynamic
mass balance, liquid and vapor phase balance, and
using a state space model. The control strategy of
(MPC) is considered very feasible and effective in
controlling the batch distillation column. This process
gave smooth and accurate results that are much better
than the common and traditional control process (PI)
[39]. A model predictive controller (MPC) algorithm
has been used to improve the performance of
distillation column of a crude oil unit [40]. To succeed
in applying (MPC) requires not only effective
deployment, but also maintaining effectiveness
through a support strategy for (MPC) systems through
diagnosing performance, monitoring performance,
and automatic tuning [41].

The performance of four different state space
models for the reactive distillation process to produce
ethyl acetate in a typical predictive control system was
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studied. This was done with the help of (System
Identification Toolbox) in the MATLAB program. It
was found that the best closed-loop dynamic
responses and the fastest time with the least number
of oscillations were using the control unit predictive
space model (n4sid) with outstanding performance
[42].

The laboratory separation column was used to
separate methanol from water. The process of
controlling the distillation column was done using the
concepts of model predictive control and
implementing the control unit directly on the
laboratory  device. The MATLAB  Simulink
environment was used in implementing the designed
control unit (MPC), and to estimate the condition and
the operation of disturbances on the distillation
column. The simulated scenarios were implemented
and verified experimentally on the laboratory device.
The results showed that the (MPC) is capable of
tracking the required temperature at the head of the
distillation tower while rejecting process disturbances
[38], [43], [44], [34] and [45].

The supervisory control and data acquisition
(SCADA) with a programmable logic control (PLC)
was used instead of the traditional distributed control
system (DCS) used in oil refineries. The high speed of
data transfer in the main control loop using the
Multipoint  Interface/Decentralized ~ Peripherals
(MPI/DP) connection (185) kbps instead of the
Ethernet connection (10/100) kbps, increased the data
transfer speed through the system and led to avoiding
wastage of material resources and the safety of workers
[46].

An adaptive predictive (AP) control strategy is
designed for the multiple-input and multi-output
(MIMO) process Fig.5. The strategy uses control units
(AP) to confront the non-linear and time-varying
dynamics of the process, as it was defined using
classical analysis tools such as the Relative Gain Array
(RGA). A simulation of the atmospheric distillation
process was performed. The control strategy (AP) was
simulated using the control strategy (ADEX) and
MATLAB programs, the process was simulated using
the Aspen Dynamic model. The proportional gain
matrix coupling technique was used to determine the
adaptive predictive control strategy. The simulation
results were also compared with the PID control
strategy, showing an improvement in operating
stability [47], [48].

Figure (5): Crude oil distillation plant.

Abdul Wahid and Richi Adi 2016 used a Model
Predictive Control (MPC) to develop a multi input
multi output (MIMO) due to the interaction of the
control loops with each other. The program (UNISIM
R390.1) was used to obtain a dynamic model for
controlling the distillation column (The transfer
function matrix as shown in (4) where Xip, Xig, Fr and
Fup are composition of distillate, bottom products,
reflux flow rate and boil-up flow rate respectively). The
control was implemented by adjusting the information
of the control unit (MPC) [1].
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A multivariable model predictive control (MMPC)
was proposed to improve the performance of the
vacuum distillation unit (VDU) due to the interaction
between variables. The results were compared with the
conventional control (PI) and the individual model
predictive control (MPC). Set point (SP) and
disturbance changes are used to test the control
performance. It was noted that the control unit
(MMPC) is better than other controllers (PI) and
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Simulation and design of multivariable control
systems for the distillation tower by applying multiple
forms of control systems for a mixture consisting of
benzene toluene wusing the MATLAB-Simulink
program was studied. Four control systems were
applied based on the variables of temperature and
liquid level at the top and bottom of the tower. A
multivariate  proportional-integral-derivative  (PID)
type controller was also used. The Integral absolute
error (IAE) criterion was used. The controller
performance and the efficiency of these controllers
was compared by using several influential functions.
The results also showed that the tower was more
stable, had a lower value for the Integral absolute error
(TIAE) critetion, and reached the desired value fastet,
in the form of a control system for the condenser
temperature and liquid level at the bottom and top of
the tower [49], [50].

The effect of advanced control systems on ethanol
production was studied. An integrated computing
platform MATLAB with Aspen HYSYS was
developed to simulate the industrial process. Two
types of control systems were used: an infinite-horizon
model predictive control (IHMPC) and a Filtered
Smith Predictor (FSP) controller to ensure the quality
of ethanol production under any change in production
conditions or feeding disturbances. These systems
were evaluated using performance indexes and
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computational processing time. It was noted that both
IHMPC and MIMO FESP controllers succeeded. They
gave satisfactory results for rejecting disturbance,
tracking the product, and maintaining process stability
[51].

The study introduces a new approach to model
predictive control (MPC) in the process industry,
utilizing an artificial neural network (ANN) model
instead of a linearized model. The ANN model was
trained and tested on a depropanizer model, resulting
in improved performance compared to conventional
control methods like PID feedback control. This
methodology can be applied to various control
systems in the industry, enhancing operational
efficiency [52].

In the process of producing dimethyl ether, the
researchers showed that the use of model predictive
control (MPC) in the production of dimethyl ether is
better than traditional control units (PID, PI), because
these units (SISO MPC) have high costs that make the

The transfer function matrix [55] is

/%9)

production of dimethyl ether uneconomical. Four
manipulated variables (condenser duty (MV7), cooler
duty (MV2), flow rate methanol (MV3) and Flow rate
wastewater (MVy)) and four controlled variables
(condenser vessel temperature (CVy), output cooler
temperature (CV3), condenser liquid level (CV3) and
Column liquid level (CV4)) make up the Multivariable
Model Predictive Control (MMPC 4x4) controller
system that was suggested to reduce the number of
controllers and overcome the interaction between the
variables that affect the control performance. A matrix
(4*4) (Equation 5) was obtained containing 16 first-
order plus dead time (FOPDT) model. The values of
integral square error (ISE) and integral absolute error
(IAE) were used as contrast tools, and it was found
that the multivariable model predictive control
(MMPC) is better than individual model predictive
control (MPC) or traditional control (PID) [53], [54]
and [55].

r —0.2e068s 0.008 e~ 629 —0.001 e~ 117s —0.0732 e—0.355—
0.15s+1 24s+1 0.752+1 0.15s+1

CVy(s) -0.012 e~741s -0.502 ¢~0.01s 0.003 e~0.05s —0.049 1215 [[MV1(s)
CVa2(s)| _ 112s+1 033s+1 0.66s+1 132s+1 MV (s) ©)
CV3(s) 0.584 ¢~0.05s -0.004 70465 (_03E-3)e 0355  _0.007e 0425 [| MV3(s) "
CV,(s) 0.03s+1 0.75s+1 0.75s+1 1.635s+1 MV ,(s)

(0.6E-3¢e70575)  (—02E-3)e"1001s (_g7E—5)e 0155  _032¢7002s

L 1.32s+1 0.27s+1 0.27s+1 076s+1 -

A soft sensing model based on the Adaptive
Neuro-Fuzzy Inference System (ANFIS) and Rough
Set Theory (RST) were used to replacing physical
sensors to improve the control system and maintain
the purity of the products. Soft sensors are developed
based on historical data on industrial operations from
supervisory control and data acquisition (SCADA)
associated with the distributed control system (DCS)
or programmable logic control system (PLC) system.
Moreover, the cascade controller based on the Neural
Fuzzy Inference System (ANFIS) outperforms other
conventional controllers (PID, FLC, FLC-GA, PID-
FIS) in terms of over/under, rise time and stabilization
[56], [57] and [58]. Unmeasurable disturbances and in
order to maintain the process in a stable manner, soft
sensors (SS) based on nerves were used for better
performance. These devices are characterized by their
speed and low time delay [59]. Artificial neural network
(ANN) was used and its ability to predict responses
with rejection of disturbances was exploited. Several
control strategies were used and connected to the
(Simulink and Aspen Dynamics) program, where this
method provided a short response time and good
performance in rejecting disturbances and the ability
to adapt to changes in the control environment [60],
[61], [62] and [63].

2. Mathematical dynamic model

Most distillation processes are multicomponent,
but sometimes, to simplify the process, some of these
columns can be approximated to binary or quasi-
binary mixtures. The purpose of this is to study the
simplified case of them so that we can clarify the basic
structure of the equations. The model is simplified
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under assumptions, no chemical reaction occurs inside
the distillation column, feed at boiling point (saturated
liquid), column is perfectly insolated, vapor holdup in
each tray is neglected, liquid and vapor are in
equilibrium on each tray, constant pressure (totally
condensate), ideal trays, reboiler and condenser
dynamics are neglected, liquid holdup varies from tray
to tray and the relative volatility remain constant
through the column and represented by this equation

_ ax
Yn = 1+(a—1)xp - ©)

According to these assumptions, the dynamic of the
distillation column can be represented by the following
mass and heat balance equations [64], [65]

Mass accumulation = mass flow rate in — mass
flow rate out (7

Heat accumulation = Heat flow rate in — Heat
flow rate out ..(8)

Condenser and reflex drum

dMpgp

—® =V~ (R+D) -0
d’"l;# =V1y; — (R + D)xgp )
dMppT
Crp— o> =H{Vy —Hip(R+D) — Q. ...(11)

For first tray (n=1)

GEERAV Vi Ly ..(12)
dﬂfitxl =Rxpp +Voy2 = Viy1 — Lixy  ...(13)
€, 22 = HY,R + HYV, — HYV, — HAL, .14
17 g RD 2V2 1V 1L1 ...(14)
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For any tray (n) except first tray and feed tray

dM,,

Tan—1+Vn+1_Vn_Ln (15)
dm,
d_r;xn =Ly 1Xp-1 + Var1Yne1 — VaVn — Lpxy,
...(16)
dM, T,
CnT = Hﬁ—ll‘n—l + HK+1Vn+1 - HKVn -
HLL, ...(17)
For feed tray (nF)
aMm
= Lop1+ Vapsr 7 F = Vop = Lyp ...(18)
dMppXn
=2 = Fxp + Lyp-1Xnp-1 + Vars1Ynre1 —
VnFYnF - LannF "'(19)
dMpTy,
CnF# =Hpp_qLnp_1 + HyppaVaper +
HgF — HypVop — HypLnp -+ (20)
Foe last tray (n=N)
am
d_tN=LN—1+VB_VN_LN (21)
dMyX
:t Y= Ly_1xy_1+Vgyp — Vyyn — Lyxy
...(22)
dMNT
Cn % = Hfj_1Ly_1 + HEVg — HyVy — HLy
...(23)
For reboiler and the bottom of column
am
— =Ly-Vpz—B .24
dMgpX
di B :LNxN_VByB_BxB (25)
Cp ™22 = HiLy + Qg — HVy — HYB ..(20)

3. Conventional Controllers

There are many types of controllers used for
process control especially in refinery process such as
proportional controllers (P), integral controllers (I)
and derivative controllers (D) or combination of these
controllers. By PID control, the physical parameters
including temperature, pressure, flow rate, and level
can all be managed. The PID is only an equation that
the controller uses to evaluate the variables that it is
trying to govern. For example, a feedback signal is sent
to the controller when a process variable's (PV)
temperature is monitored. The controller then
compares the feedback signal to the set point (SP) to
generate an error value. To analyze the value, one or
more of the three proportional, integral, and derivative
techniques are applied. In order to fix the error (E),
the controller then issues the required commands or
modifies the control variable (CV). An iterative
process is formed by these steps [64], [66], [67] and
[68]. Table 1 summarize the advantages and
disadvantages of each controller.

Table (1): Advantages and disadvantages of the

controllers
Controller Advantages Disadvantages
-Large offset and
. -Fast response oy
Proportional o doesn’t bring the
-Minimize
®) . system to the
fluctuation . .
desired set point
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Integral (I)

-No offset, return
the system to its set
point

-Slow response

Derivative (D)

-Reducing error
change and

-Having offset
-Amplifies the

reducing oscillations [noise signals

Proportional-
Integral (IP)

-Improve damping
-No offset

-Reduce stability
-Slow response

-Steady-state

Proportional-  |-Increased stability .
- .~ |etror is not zero
Derivative -Decreased settling .
o -Highly affected
(PD) and rising time .
by external noise
Proportional-  |-Steady-state error  |-Highly cost
Integral- is zero -Complexity in
Detivative -Moderate peak tuning and
(PID) overshoot stability |design

Controller tuning is the process of determining the
controller parameters that produce the desired output.
The PID parameters can be determined either by a
mathematical model of the system if it’s available, or,
by the information is determined experimentally.

There are many methods for tuning controllers
including, the trial and error method, it relies on the
principle of guessing and checking, this is done by
adjusting the gain of the control unit (K. while
keeping the integral derivative action at a minimum
until the required outputs are obtained [64], [69].
Process Reaction Curve is used for an already existing
system, where a stable system is disturbed by either
changing the set point or the system variables, and a
curve is obtained. These kinds of curves are produced
in open-loop systems, which allow the disturbance to
be recorded because there is no system control.
Multiple parameters can be measured, such as
transportation lag or dead time, and the final steady
state value [64]. The Ziegler-Nichols (ZN) controller
settings are a simple way to adjust PID controllers, as
they provide reasonable performance for some loops.
The ZN settings are considered a starting point from
which the settings of other controllers are performed
[67], [68] and [70]. Cohen-Coon Method is an open-
loop method and is often used as an alternative to the
Ziegler-Nichols (ZN) method, where it corrects the
slow steady-state response of the Ziegler-Nichols
(ZN) method when there is a delay in the process (a
large dead time). It is used for first-order models with
a high time delay [64], [68]. Tyreus-Luyben method its
considered similar to the Ziegler-Nichols (ZN)
method, but it provides safer setting and is suitable for
controlling some chemical processes because the
Ziegler-Nichols (ZN) method has a small damping
coefficient with a small time constant, while the
Tyreus-Luyben method gives a large damping
coefficient with a large time constant [69].

4. Advanced Control

There many advanced process control
strategies used in the refinery process such as Model
Predictive Control, Adaptive Control, Feedback and
feedforward, Fuzzy Logic Control (FL.C) and Neural
Network.

Model predictive control (MPC) is considered the
most advanced form of advanced process control. It is

are
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considered a way to deal with control problems such
as multivariate, time delay, nonlinearity and open-loop
instability. Model predictive control (MPC) aims to
lower the performance standard going forward. The
factory model is utilized to predict future behavior,
and mathematical expressions are also employed to
forecast system behavior and enhance the procedure
within a given time frame Fig.6.

The most common MPC techniques are Dynamic
Matrix Control (DMC) and Modular Algorithmic
Control (MAC), as they have been used in a large
number of industrial processes and ate highly efficient
in dealing with constraints. There are several types,
linear model predictive control (LMPC). It aims to
improve performance by predicting future signals and
optimizing control variable values. Nonlinear MPC
(NMPC) it is employed when the linear model is
insufficient to accurately represent the process.

future

past

set point

‘\ model prediction
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.
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Figure (6): Basic concept of MPC.

Quadratic Dynamic Matrix Control (QDMC)
algorithm is considered the second generation of
model predictive control, as it consists of a set of
algorithms that provide a way to implement input and
output restrictions [64] [71], [72], [73], [74] and [75].

Adaptive control is a strategy that relies on
constantly changing parameters. The parameters of the
process model are set using online process
identification and then the control action is derived
and executed accordingly. Therefore, this type is used
in systems that exhibit non-linear behavior or where
the process structure is unknown [706].

Feedback and feedforward, Feedback includes
receiving information about an action or behavior that
occurred at a previous time and making a future
change to address this event or behavior. Therefore, it
focuses on what happened in the past and is useful in
learning from mistakes and addressing weak points.
Feed-forward includes instructions, suggestions, and
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visions to improve performance during the
continuation of the event or behavior, and its work
focuses on and expands future capabilities and
solutions. Therefore, these insights are taken
advantage of to achieve better performance in the
future [77], [78].

Fuzzy Logic Control (FLC) is considered one of
the most effective control designs based on
intelligence that is used for multivariable and non-
linear industrial processes. It is used to overcome the
difficulty faced by the designer in the process of
modeling and simulating complex processes Fig.7.
However, despite obtaining a relatively accurate model
of a dynamic system, sometimes it is complex and
difficult to implement in design and control processes,
especially with traditional control methods [79], [80],
[77], [81] and [82].

. i
! 1
: Rule !
! base !
i x !
. .
Scaling | i Scaling
i Fuzzific| |[Decision] [Defuzzif]} @
. g I'| ation logic ication |1
Crisp : i Crisp
input = be=mmmmmmmmmmmm——————————— output

Fuzzy controller

Figure (7): Structure of a Mamdani type of fuzzy
logic controller.

Classical logic differs from fuzzy logic in that the
former relies on an inaccurate way of thinking to
perform a basic task, as it relies on the ability to deduce
an approximate solution to a specific problem based
on inaccurate information. The concept of fuzzy logic
(FL) was introduced in the name of fuzzy set theory as
a programming language and is considered a basic
branch of artificial intelligence. It constitutes a new era
of control systems called fuzzy logic control (FLC),
which has proven to be an effective way to control
non-linear and complex systems [83], [84] and [85].
Zadeh is considered the founding father of this field,
as he implicitly advanced the concept of approximate
human reasoning to make effective decisions. He is
primarily concerned with dealing with ambiguous
qualitative quantities. The fuzzy logic controller (FLC)
works based on converting an experience-based
linguistic control strategy into an automatic control
strategy utilizing fuzzy logic. To accomplish this, we
must supplement the standard input-output data set
with a front-end "fuzzifiet" and a rear-end
"defuzzifier." [86] [87] and [88]. It has been used in
many applications, including robotics [89], [90], [91],
[92], [93] and [94], many of chemical industries [95],
[96], disk drives [97], fuzzy logic chips [91], [98],[99]
and [100], electronic devices [92], [101] and[102],
automated control [98], [103], model and helicopter
landing systems [90], [92], [98] and [101], sensors [104],
pattern recognition [103], [104], [105], [106] and [107]
etc.

Neural Network, in the forties of the twentieth
century, researchers began to develop models of
neurons cells that mimic the function of the human
brain. Biological and psychological concepts were
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merged to create the first artificial neural network
(ANN) [108]. They were first employed as electronic
circuits, but later on, they were modified to become a
more adaptable method of computer simulation. The
process of studying and developing the neural network
continued because, of its ability to simulate the human
brain, in addition to its ability to respond and learn. It
has been used in many fields, such as prediction,
control systems, pattern recognition and others.
Learning and adaptation are the main focus of neural
network research, which gives accuracy and robustness
to the neural network (NN). The artificial neural
network (ANN), which learns from a succession of
sets of input data and output data that are supplied to
it, assigns a set of input patterns to a set of output
patterns in the modeling and prediction process. The
network, through what it has learned, approximates
and predicts outputs [62], [81], [109], [110], [111],
[112], [113] and [114].

It's worthy to state that the process of controlling
one variable is relatively easy. However, when a second
pair of variables appear, the process becomes mote
complicated because an interference process occurs
between the control loops. This happens because the
inputs that are controlled affect more than the outputs
that are controlled. Therefore, not only must a choice
be made between the pairs used for control, but there
may be interference, and in this case, the control
becomes more difficult. To facilitate the control
process, the process of decoupling variables is used
using a computer system, where one control unit is set
to adjust many control valves through a decoupling
system Fig.8 [66], [78].

u’ u ¥
D Gp

a. General multivariable representation

remmemm—————
o1
U, 1 dy 727
: 4
1
1
1
1 dy
: J
1
1
1
i dp,
i
1
! )
: +
U:* - dy,
1
1

Process
b. Two-input-two-output representation

Decoupler
Figure (8). Decoupling control strategy.

5. Conclusions

This research discusses the methods and types of
control in the distillation tower. The process of
controlling the distillation tower is considered one of
the most difficult and complex processes due to the
non-linearity of the process, the interference between
control loops, and the large number of input and
output variables. Several types of controllers have been
studied, starting from simple traditional units
(proportional, integral, derivative controllers (PID)) to
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more complex units such as model predictive
controllers (MPC) of various types, fuzzy logic control
(FLC), artificial neural networks (ANN), etc.
Proportional, integral, and derivative controllers (PID)
were more widely used in many control processes due
to their simplicity and ease of principles, but these
units were not effective in controlling systems due to
multivariable with high interaction between control
cycles, nonlinear behaviour and large gains, so
advanced adaptive and predictive control systems were
used because they relied on model predictive control
and stochastic optimization algorithms.

Nomenclature

Flow rate bottom product (kg/ht)
Heat capacity (k] /kg °C)

Flow rate distillate product (kg/ht)
Feed flow rate (kg/hr)

Feed enthalpy (k] /ht)

I Enthalpy of liquid phase (kJ/ht)

v Enthalpy of vapor phase (kJ/ht)
Liquid flow rate (kg/ht)

M Liquid holdup (kg)

Q. Heat amount reduced by condenser (kJ/ht)
Heat amount supply by teboiler (kJ/hr)
R Reflux flowrate (kg/hr)

T  Temperature (°C)

V  Vapor flow rate (kg/ht)

X Liquid concentration

CIITITUOW

xp  Feed concentration

y Vapor concentration
« Relative volatility
Subsctription

1 Tray number one

2 Tray number two

B Bottom of the column
RD Reflex drum
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