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Abstract 

The oil industry has a direct impact on the economic feasibility of 

other sectors and is considered to be the most important energy source 

used to turn the wheels of other industries. Therefore, it was necessary to 

pay attention and continuously develop this industry, to find the best 

modern techniques for designing, pre-commissioning and controlling 

process, to improve efficiency, preserve energy and achieve the highest 

production of costly components with the highest purity of the product. 

This study aims to provide a literary analysis of the stages of development 

and progress of the dynamics and control of the petroleum industry, in 

particular the distillation column, because it is multivariable with high 

interaction between control cycles, nonlinear behaviour and large gains. 

Control processes have undergone many developments and 

modernizations to achieve the best results. Various control methods have 

been used, ranging from simple proportional-integral-derivative controller 

(PID) to advanced control strategies such as model predictive control 

(MPC), multivariate model predictive control (MMPC), fuzzy logic control 

(FLC), quadratic dynamic matrix control (QDMC), artificial neural network 

control (ANN) and other advanced control techniques. The authors 

concluded from the review that the advanced control strategies superior 

than the conventional methods. 

Keywords: Modeling and advanced control, Distillation column, Model 

Predictive Control, Fuzzy logic control, Artificial Neural Network. 

: مراجعةصفيةالت  اتالنمذجة الرياضية والتحكم المتقدم في عملي  
 ، سلام كاظم الدواري  خالد مخلف موسى ،ليث صادق محمود 

 الخلاصة: 

صناعة النفط لها تأأثير مباشر على الجدوى الاقتصادية للقطاعات الأخرى، وتعتبر أأهم مصدر للطاقة يس تخدم  ان  

لتحريك عجلات الصناعات الأخرى، لذلك كان من الضروري الاهتمام بهذه الصناعة وتطويرها بشكل مس تمر، لإيجاد 

لتصم  الحديثة  التقنيات  وتح  تشغيلو   يمأأفضل  الطاقة  على  والحفاظ  الكفاءة  لتحسين  فيها،  نتاج  والتحكم  اإ أأعلى  قيق 

لى تقديم تحليل أأدبي لمراحل تطور وتقدم ديناميكيات التحكم    ثمينهللمكونات ال  بأأعلى نقاء للمنتج. تهدف هذه الدراسة اإ

في صناعة البترول، وخاصة عمود التقطير، لأنه متعدد المتغيرات مع تفاعل عالٍ بين دورات التحكم والسلوك غير الخطي  

طورات والتحديثات لتحقيق أأفضل النتائج. تم اس تخدام  والمكاسب الكبيرة. لقد خضعت عمليات التحكم للعديد من الت

لى استراتيجيات التحكم  PIDطرق تحكم مختلفة، تتراوح من وحدة التحكم التفاضلية التكاملية المتناس بة البس يطة )  ( اإ

 ( بالنموذج  التنبئي  التحكم  مثل  )MPCالمتقدمة  المتغيرات  المتعدد  بالنموذج  التنبئي  والتحكم   ،)MMPC والتحكم  ،)  

( الضبابي  )FLCالمنطقي  التربيعية  الديناميكية  المصفوفة  في  والتحكم   ،)QDMC العصبية الش بكة  في  والتحكم   ،)

( المتقدمة.ANNالاصطناعية  التحكم  تقنيات  من  وغيرها  هذه    (  من  المؤلفون  استراتيجيات اس تنتج  أأن  المراجعة 

 المتقدمة متفوقة على الطرق التقليدية. لس يطرها

1. Introduction  
The development of industries at the present time 

has led to the consumption of large amounts of energy. 
This has led to a significant increase in energy 

consumption, especially that produced from oil and 
gas, so there must be development and monitoring 
processes for optimal energy consumption [1], [2]. 
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Crude oil generally consists of thousands of 
hydrocarbon and non-hydrocarbon compounds that 
vary from low molecular weight to compounds with 
very high molecular weight, with different proportions 
of paraffinic, naphthenic, and aromatic compounds. 
The properties of crude oil depend on the oil well and 
the location at which the oil to be extracted, which 
makes the stability of the operation of crude oil units 
and achieving the specifications of the products 
difficult [3]. 

One of the most crucial procedures in the chemical 
process industries is the crude distillation unit (CDU). 
The percentage of separation using a distillation 
column in the chemical industry worldwide is 
estimated at 95% [4], [5] and [6]. The crude oil initially 
must pass through the crude distillation unit (CDU) 
before going into the upgrading and developing units. 
In that unit, the crude oil submits to physical 
fractionation to get many hydrocarbon components 
like light and heavy naphtha, kerosene, light gas oil, 
heavy gas oil and atmospheric residue [7]. After 
passing through several processing stages to turn these 
products into more valuable products. The products 
go to the blending or pooling stage, where 
components are combined to create the final products. 
Each cut must have some important quality 
requirements like the aromatic and total sulfur content, 
viscosity index (VI), red vapor pressure, octane 
number, cetane number, etc. [8], [9]. 

The distillation column consists of a vertical 
column with trays used to increase the contact area to 
improve component separations, a reboiler to supply 
heat for the necessary vaporization from the bottom 
of the column, a condenser to cool and condense the 
vapor from the top and a reflux drum to collect the 
condensed vapor so that reflux liquid can be recycled 
back from the column. A collection equipment used 
for mass transfer or heat transfer [10], [4], [11] and 
[12]. The process of distillation of crude oil is 
considered as a complex and integrated process, which 
represents a major challenge in its work. Therefore, 
control and simulation processes have become 
important to study the behavior of this type of 
important process due to the presence of complex 
dynamic interactions between the inputs and outputs 
of the process [5], [13] 

The system used in the process of controlling the 
distillation tower is known as the multiple input and 

output (MIMO) systems. These systems are 
considered more complex and difficult than systems 
with a single input and output (SISO) due to 
interactions that occur among the variable inputs and 
variable outputs [14]. Different approaches are taken 
to study the control of the distillation columns. The 
impact of interactions between the control loops, the 
effect of disturbances, the rejection of disturbances, 
the process performance, and the decupling [15], [16], 
[17] and [18]. 

A simulation and experimental study of the control 
dynamics of a binary distillation column with a side 
stream was carried out. Three compositions were 
studied: an upper composition, a lower composition 
and a side composition. It was noted that the change 
in the flow rate of the side stream was ineffective in 
adjusting this stream by changing the location of the 
withdrawal tray for the side stream. It gives great 
control over the composition of the side stream flow 
rate. In addition, closed-loop control of the upper, side 
and lower compositions has been achieved in 
simulation and experimental studies [19]. 

The control of a multivariable distillation column 
containing an upper product, lower product, and side 
product was studied. Multivariable controllers with 
multiple time delays were used, combined with 
traditional single-loop PI controllers. It was observed 
that the performance of this method is better than the 
traditional single-loop PI controller, especially in the 
process of rejecting disturbance [20], [21]. 

Alatiqi and Luyben 1986 compared a ternary 
mixture distillation process containing a small 
percentage of the intermediate distillate (less than 
20%) by using a multivariable, complex and interacting 
side stream column/stripper distillation configuration 
(SSS) Fig.1 was explored via digital simulation, it was 
compared quantitatively with the conventional 
sequential (light-out-first) two column configurations 
(LOF) Fig.2. They found possible to control a 
complex (SSS) configuration using four conventional 
SISO controllers, and the dynamic response using the 
complex SSS system is better than the traditional 
(LOF) system. The SSS configuration was controlled 
using four conventional PI controllers. The SSS 
system's load response was on equal with, if not better 
to, that of the traditional (LOF) system [22]. 

 
The transfer function matrix for (SSS) [22] is 

[

𝑿𝑫𝟏

𝑿𝑩𝟑

𝑿𝑺𝟐

∆𝑻

] =

[
 
 
 
 
 
 
 

𝟒.𝟎𝟗 𝐞−𝟏.𝟑𝐬

(𝟑𝟑𝐬+𝟏)(𝟖.𝟑𝐬+𝟏)

−𝟔.𝟑𝟔 𝐞−𝟏.𝟐𝐬

(𝟑𝟏.𝟔𝐬+𝟏)(𝟐𝟎𝐬+𝟏)

−𝟎.𝟐𝟓 𝐞−𝟏.𝟒𝐬 

𝟐𝟏𝐬+𝟏

−𝟎.𝟒𝟗 𝐞−𝟔𝐬

(𝟐𝟐𝐬+𝟏)𝟐

−𝟒.𝟏𝟕 𝐞−𝟒𝐬

𝟒𝟓𝐬+𝟏

𝟔.𝟗𝟑 𝐞−𝟏.𝟎𝟐𝐬

𝟒𝟒.𝟔𝐬+𝟏

−𝟎.𝟎𝟓 𝐞−𝟔𝐬

(𝟑𝟒.𝟓𝐬+𝟏)𝟐

𝟏.𝟓𝟑 𝐞−𝟑.𝟖𝐬

𝟒𝟖𝐬+𝟏

𝟏.𝟕𝟑 𝐞−𝟏𝟖𝐬

(𝟏𝟑𝐬+𝟏)𝟐

𝟓.𝟏𝟏 𝐞−𝟏𝟐𝐬

(𝟏𝟑.𝟑𝐬+𝟏)𝟐

𝟒.𝟔𝟏 𝐞−𝟏.𝟎𝟏𝐬

𝟏𝟖.𝟓𝐬+𝟏

−𝟓.𝟒𝟗 𝐞−𝟏.𝟓𝐬

𝟏𝟓𝐬+𝟏

−𝟏𝟏.𝟏𝟖 𝐞−𝟐.𝟔𝐬

(𝟒𝟑𝐬+𝟏)(𝟔.𝟓𝐬+𝟏)

𝟏𝟒.𝟎𝟒(𝟏𝟎𝐬+𝟏) 𝐞−𝟎.𝟎𝟐𝐬

(𝟒𝟓𝐬+𝟏)(𝟏𝟕.𝟒𝒔𝟐+𝟑𝐬+𝟏)

𝟎.𝟏 𝐞−𝟎.𝟎𝟓𝐬

(𝟑𝟏.𝟔𝐬+𝟏)(𝟓𝐬+𝟏)

𝟒.𝟒𝟗 𝐞−𝟎.𝟔𝐬

(𝟒𝟖𝐬+𝟏)(𝟔.𝟑𝐬+𝟏)]
 
 
 
 
 
 
 

[

𝑹
𝑸𝑩

𝑸𝑩𝑺

𝑳𝒔

]                …(1) 
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And for (LOF) [22] is: 

𝑿𝑫𝟏

𝑿𝑫𝟐

𝑿𝑩𝟐

=

[
 
 
 
 
 

𝟐.𝟕 𝒆−𝟏𝟎𝟓𝒔

𝟒𝟐𝒔+𝟏
𝟎 𝟎

𝟗.𝟎 𝒆−𝟐𝟑𝒔

(𝟑𝟑𝒔+𝟏)𝟐

𝟐.𝟎𝟓 𝒆−𝟑𝒔

(𝟑𝟖𝒔+𝟏)(𝟐𝟓𝒔+𝟏)

−𝟎.𝟕𝟗 𝒆−𝟏.𝟏𝒔

(𝟑𝟔𝒔𝟐+𝟖.𝟒𝒔+𝟏)

−𝟏.𝟐 𝒆−𝟑.𝟖𝒔

(𝟏𝟗𝒔+𝟏)𝟐

−𝟎.𝟎𝟑 𝒆−𝟒𝒔

(𝟗.𝟓𝒔+𝟏)𝟐

𝟎.𝟑𝟑 𝒆−𝒔

(𝟑.𝟖𝒔+𝟏)𝟐 ]
 
 
 
 
 

𝑹𝟏

𝑹𝑹𝟐

𝑸𝑩𝟐

                                    …(2) 

 
These columns are complex, multi-variable, 

interactive, and non-linear, so a new successfully 
control scheme was developed by Han and Park 
(1993), to solve problems of a non-linear and multi-
variable nature using a nonlinear wave model as a 
generic model control. Dynamic simulation 
experiments to control these two systems show that 
the proposed control scheme can successfully improve 
the distillation components [23], [24]. 

Relative gain array (RGA) and multivariate 
Nyquist-Bode schemes were used to adjust the 
preferred structures according to the specified load 
rejection criterion and the specified robustness for 
developed multivariable systems using (SISO) type 
controllers, which includes designing control loops 
using dynamic and steady state models of the transfer 
function type. The best frequency response scheme is 
chosen as a result of the resulting disturbances in the 
load system [25], [26] and [27]. 

 
The transfer function matrix for Alatiqi (RR) scheme [25] is 

[

𝑿𝑫𝟏

𝑿𝑩𝟑

𝑿𝑺𝟐

∆𝑻

] =

[
 
 
 
 
 
 
 

𝟐.𝟐𝟐 𝒆−𝟐.𝟐𝟐𝒔

(𝟑𝟔𝒔+𝟏)(𝟐𝟓𝒔+𝟏)

−𝟐.𝟗𝟒(𝟕.𝟗𝒔+𝟏)𝒆−𝟏.𝟎𝟓𝒔

(𝟐𝟑.𝟕𝒔+𝟏)𝟐(𝟐𝟓𝒔𝟐+𝟐𝒔+𝟏)

𝟎.𝟏𝟕 𝒆−𝟏.𝟐𝒔

(𝟑𝟏.𝟔𝒔+𝟏)(𝟕𝒔+𝟏)

−𝟎.𝟔𝟒 𝒆−𝟐𝟎𝒔

(𝟐𝟗𝒔+𝟏)𝟐

−𝟐.𝟑𝟑 𝒆−𝟔𝒔

(𝟑𝟓𝒔+𝟏)𝟐

𝟑.𝟒𝟔 𝒆−𝟏.𝟎𝟏𝒔

𝟑𝟐𝒔+𝟏

−𝟎.𝟓𝟏 𝒆−𝟖.𝟓𝒔

(𝟑𝟐𝒔+𝟏)𝟐

𝟏.𝟔𝟖 𝒆−𝟑𝒔

(𝟐𝟖𝒔+𝟏)𝟐

𝟏.𝟏𝟐 𝒆−𝟐𝟑𝒔

(𝟏𝟕𝒔+𝟏)𝟐

𝟑.𝟓𝟒 𝒆−𝟏𝟒𝒔

(𝟏𝟐𝒔+𝟏)𝟐

𝟒.𝟒𝟏 𝒆−𝟏.𝟎𝟏𝒔

𝟏𝟔.𝟐𝒔+𝟏

−𝟓.𝟑𝟖 𝒆−𝟏.𝟓𝒔

𝟏𝟕𝒔+𝟏

−𝟓.𝟕𝟑 𝒆−𝟐.𝟓𝒔

(𝟖𝒔+𝟏)(𝟓𝟎𝒔+𝟏)

𝟒.𝟑𝟐(𝟐𝟓𝒔+𝟏)𝒆−𝟎.𝟐𝒔

(𝟓𝟎𝒔+𝟏)(𝟐𝟎.𝟐𝒔𝟐+𝟐.𝟔𝒔+𝟏)

𝟏.𝟐𝟓 𝒆−𝟐.𝟖𝟓𝒔

(𝟒𝟑.𝟔𝒔+𝟏)(𝟗𝒔+𝟏)

𝟒.𝟕𝟖 𝒆−𝟎.𝟏𝟓𝒔

(𝟒𝟖𝒔+𝟏)(𝟓𝒔+𝟏)]
 
 
 
 
 
 
 

[

𝑹𝑹
𝑸𝑩

𝑸𝑩𝑺

𝑳𝒔

]                   …(3) 

 

 
Figure (1): The basic design for SSS system. 

A performance comparison was made for the 
modern control techniques used to control distillation 
towers, including conventional control (PI) 
techniques, nonlinear Process Model Based Control 
(PMBC) and Artificial Neural Networks (ANN). The 
results were presented for two cases of disturbance 
rejection and set point changes for a C3 splitter 
column. It was noted that the (PI) control was similar 
to the performance of the (PMBC) control with an 
exception in the feed composition, and also the 
(PMBC) control is equivalent to the (ANN) control 
[28]. 

A smart and advanced sensor was proposed to 
predict the quality of crude oil distillation tower 
products. This approach relies on a new real-time 

modeling technology, namely, the use of eXtended 
Evolving Fuzzy Takagi-Sugeno Models (exTS) for 
real-time monitoring and prediction of certain refinery 
distillation process parameters, which has proven its 
efficiency in predicting real-time analysis of crude oil 
distillation quality parameters and its high robustness 
in using a small number of fuzzy rules to interpret the 
complex dynamics of product specifications [29]. 
 

 
Figure (2): Basic design for LOF system. 

The controlling the distillation column is one of 
the important matters to reduce energy consumption 
and increase the efficiency of the separation process, 
so, a methodology called adaptive predictive expert 
(ADEX) control was proposed and the results were 
compared with traditional controller (PID) used in oil 
refineries. This is done through careful control of the 
main towers variables, increasing their stability and 
eliminating the interaction between variables to reduce 
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the problem of resonance that occurs in distillation 
towers when using a controller (PID) Fig.3 [30]. 

 
Figure (3): Process description of the naphtha 

splitter. 
A predictive control strategy was proposed to 

solve the problem of non-linear control of the 
multivariable estimation column (4*4). A model 
predictive control (MPC) was used to give better 
results than traditional control. This strategy was 
applied to the (Alatiqi and Luyben 4x4 process) and 
(Doukas and Luyben 4x4 process) and gave good 
results and different from other traditional methods 
[31], [32]. 

Based on the energy balance structure (L-V), a 
computational model is presented to model the 
distillation and control tower. The reflux rate (L) and 
the boiling rate (V) were used as inputs to control the 
purity of the upper distillate(XD) and the impurities 
present in the lower product (XB) as outputs of the 
process Fig.4. Modeling and machining were 
completed in three stages: the basic nonlinear model 
of the plant, the full-order model, and the reduced-
order linear model. The reduced-order linear model 
used a reference model for a model-reference adaptive 
control (MRAC). The process outputs to track 
reference control points to ensure the purity and 
quality of the product and the presence of disturbances 
occurring in the process feed [33]. 

 
Figure (4): Distillation flow sheet. 

An improvement in the performance of the model 
predictive control (PMC) using a quadratic program 
(QP) was studied. The purpose is to control and 
economically improve the system. It was applied to a 
distillation system and showed effective results. What 
distinguishes the proposed approach is that the 
predictive control problem can be solved using the 
available (QP) tools [34], [35]. 

The control system based on the non-linear model 
(NMPC) used to control distillation columns is 
considered one of the best options used for control. 
The system (NMPC) was developed using a non-linear 
autoregressive model with external inputs (NARX) 
and the Unscented Kalman Filter (UKF) was used to 
estimate the state variables in (NMPC). The sequential 
quadratic programming method (SQP) was used to 
solve the non-linear programming problem (NLP). 
The results showed that the performance of (NARX 
NMPC) in closed loop control was good in tracking 
the set point and rejecting disturbances [36]. 

Khalid M. Mousa, Samer A. Kasim (2010) used 
two control systems, decoupling and fuzzy logic 
control, after the failure of conventional control. The 
control of the side stream distillation column was 
studied, and the controlled variables were the 
composition of the distillate (XD) and the composition 
of the side stream (XS). The manipulated variables 
were the side stream flow rate (LS) and the reflux flow 
rate (R) (the system was modeled by (Alatiqi and 
Layben). The fuzzy logic control showed a noticeable 
improvement in the system’s response and control, 
where the decoupling of variables made the system 
more stable [37]. 

Sivakmar and others (2010), supposed a solution to 
the problem of multivariable nonlinearity in the 
distillation column was proposed by using a fuzzy 
model predictive control strategy (FMOC) that is used 
to predict the outputs to control the process, where 
using a binary distillation column (Wood and Berry) 
and comparing the results between proposed strategy 
(FMPC) and conventional control (PID) and show 
that (FMPC) gives Better performance than (PID) 
[38]. 

A distillation process of a binary mixture of 
methanol and water was studied in a batch distillation 
column, where a predictive control model (MPC) was 
designed based on theoretical analysis of dynamic 
mass balance, liquid and vapor phase balance, and 
using a state space model. The control strategy of 
(MPC) is considered very feasible and effective in 
controlling the batch distillation column. This process 
gave smooth and accurate results that are much better 
than the common and traditional control process (PI) 
[39]. A model predictive controller (MPC) algorithm 
has been used to improve the performance of 
distillation column of a crude oil unit [40]. To succeed 
in applying (MPC) requires not only effective 
deployment, but also maintaining effectiveness 
through a support strategy for (MPC) systems through 
diagnosing performance, monitoring performance, 
and automatic tuning [41]. 

The performance of four different state space 
models for the reactive distillation process to produce 
ethyl acetate in a typical predictive control system was 
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studied. This was done with the help of (System 
Identification Toolbox) in the MATLAB program. It 
was found that the best closed-loop dynamic 
responses and the fastest time with the least number 
of oscillations were using the control unit predictive 
space model (n4sid) with outstanding performance 
[42]. 

The laboratory separation column was used to 
separate methanol from water. The process of 
controlling the distillation column was done using the 
concepts of model predictive control and 
implementing the control unit directly on the 
laboratory device. The MATLAB Simulink 
environment was used in implementing the designed 
control unit (MPC), and to estimate the condition and 
the operation of disturbances on the distillation 
column. The simulated scenarios were implemented 
and verified experimentally on the laboratory device. 
The results showed that the (MPC) is capable of 
tracking the required temperature at the head of the 
distillation tower while rejecting process disturbances 
[38], [43], [44], [34] and [45]. 

The supervisory control and data acquisition 
(SCADA) with a programmable logic control (PLC) 
was used instead of the traditional distributed control 
system (DCS) used in oil refineries. The high speed of 
data transfer in the main control loop using the 
Multipoint Interface/Decentralized Peripherals 
(MPI/DP) connection (185) kbps instead of the 
Ethernet connection (10/100) kbps, increased the data 
transfer speed through the system and led to avoiding 
wastage of material resources and the safety of workers 
[46]. 

An adaptive predictive (AP) control strategy is 
designed for the multiple-input and multi-output 
(MIMO) process Fig.5. The strategy uses control units 
(AP) to confront the non-linear and time-varying 
dynamics of the process, as it was defined using 
classical analysis tools such as the Relative Gain Array 
(RGA). A simulation of the atmospheric distillation 
process was performed.  The control strategy (AP) was 
simulated using the control strategy (ADEX) and 
MATLAB programs, the process was simulated using 
the Aspen Dynamic model. The proportional gain 
matrix coupling technique was used to determine the 
adaptive predictive control strategy. The simulation 
results were also compared with the PID control 
strategy, showing an improvement in operating 
stability [47], [48]. 

Figure (5): Crude oil distillation plant. 

Abdul Wahid and Richi Adi 2016 used a Model 
Predictive Control (MPC) to develop a multi input 
multi output (MIMO) due to the interaction of the 
control loops with each other. The program (UNISIM 
R390.1) was used to obtain a dynamic model for 
controlling the distillation column (The transfer 
function matrix as shown in (4) where XID, XIB, FR and 
FUB are composition of distillate, bottom products, 
reflux flow rate and boil-up flow rate respectively). The 
control was implemented by adjusting the information 
of the control unit (MPC) [1]. 

[
XID

XIB
] = [

0.3405 e−6s

36s+1

−0.1081 e−5s

51s+1

−0.122 e−13.5s

34.52+1

0.1555

13s+1

] [
FR

FBU
]       …(4) 

A multivariable model predictive control (MMPC) 
was proposed to improve the performance of the 
vacuum distillation unit (VDU) due to the interaction 
between variables. The results were compared with the 
conventional control (PI) and the individual model 
predictive control (MPC). Set point (SP) and 
disturbance changes are used to test the control 
performance. It was noted that the control unit 
(MMPC) is better than other controllers (PI) and 
(MPC), with a high percentage improvement in 
performance [10]. 

 
Simulation and design of multivariable control 

systems for the distillation tower by applying multiple 
forms of control systems for a mixture consisting of 
benzene toluene using the MATLAB-Simulink 
program was studied. Four control systems were 
applied based on the variables of temperature and 
liquid level at the top and bottom of the tower. A 
multivariate proportional-integral-derivative (PID) 
type controller was also used. The Integral absolute 
error (IAE) criterion was used. The controller 
performance and the efficiency of these controllers 
was compared by using several influential functions. 
The results also showed that the tower was more 
stable, had a lower value for the Integral absolute error 
(IAE) criterion, and reached the desired value faster, 
in the form of a control system for the condenser 
temperature and liquid level at the bottom and top of 
the tower [49], [50]. 

The effect of advanced control systems on ethanol 
production was studied. An integrated computing 
platform MATLAB with Aspen HYSYS was 
developed to simulate the industrial process. Two 
types of control systems were used: an infinite-horizon 
model predictive control (IHMPC) and a Filtered 
Smith Predictor (FSP) controller to ensure the quality 
of ethanol production under any change in production 
conditions or feeding disturbances. These systems 
were evaluated using performance indexes and 
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computational processing time. It was noted that both 
IHMPC and MIMO FSP controllers succeeded. They 
gave satisfactory results for rejecting disturbance, 
tracking the product, and maintaining process stability 
[51]. 

The study introduces a new approach to model 
predictive control (MPC) in the process industry, 
utilizing an artificial neural network (ANN) model 
instead of a linearized model. The ANN model was 
trained and tested on a depropanizer model, resulting 
in improved performance compared to conventional 
control methods like PID feedback control. This 
methodology can be applied to various control 
systems in the industry, enhancing operational 
efficiency [52]. 

In the process of producing dimethyl ether, the 
researchers showed that the use of model predictive 
control (MPC) in the production of dimethyl ether is 
better than traditional control units (PID, PI), because 
these units (SISO MPC) have high costs that make the 

production of dimethyl ether uneconomical. Four 
manipulated variables (condenser duty (MV1), cooler 
duty (MV2), flow rate methanol (MV3) and Flow rate 
wastewater (MV4)) and four controlled variables 
(condenser vessel temperature (CV1), output cooler 
temperature (CV2), condenser liquid level (CV3) and 
Column liquid level (CV4)) make up the Multivariable 
Model Predictive Control (MMPC 4x4) controller 
system that was suggested to reduce the number of 
controllers and overcome the interaction between the 
variables that affect the control performance. A matrix 
(4*4) (Equation 5) was obtained containing 16 first-
order plus dead time (FOPDT) model. The values of 
integral square error (ISE) and integral absolute error 
(IAE) were used as contrast tools, and it was found 
that the multivariable model predictive control 
(MMPC) is better than individual model predictive 
control (MPC) or traditional control (PID) [53], [54] 
and [55]. 

 
The transfer function matrix [55] is 

[

𝑪𝑽𝟏(𝒔)

𝑪𝑽𝟐(𝒔)
𝑪𝑽𝟑(𝒔)

𝑪𝑽𝟒(𝒔)

] =

[
 
 
 
 
 
 

−𝟎.𝟐 𝒆−𝟎.𝟔𝟖𝒔

𝟎.𝟏𝟓𝒔+𝟏

𝟎.𝟎𝟎𝟖 𝒆−𝟔.𝟐𝟗𝒔

𝟐.𝟒𝒔+𝟏

−𝟎.𝟎𝟎𝟏 𝒆−𝟏.𝟏𝟕𝒔

𝟎.𝟕𝟓𝟐+𝟏

−𝟎.𝟎𝟕𝟑𝟐 𝒆−𝟎.𝟑𝟓𝒔

𝟎.𝟏𝟓𝒔+𝟏

−𝟎.𝟎𝟏𝟐 𝒆−𝟕.𝟒𝟏𝒔

𝟏.𝟏𝟐𝒔+𝟏

−𝟎.𝟓𝟎𝟐 𝒆−𝟎.𝟎𝟏𝒔

𝟎.𝟑𝟑𝒔+𝟏

𝟎.𝟎𝟎𝟑 𝒆−𝟎.𝟎𝟓𝒔

𝟎.𝟔𝟔𝒔+𝟏

−𝟎.𝟎𝟒𝟗 𝒆−𝟏.𝟐𝟏𝒔

𝟏.𝟑𝟐𝒔+𝟏

𝟎.𝟓𝟖𝟒 𝒆−𝟎.𝟎𝟓𝒔

𝟎.𝟎𝟑𝒔+𝟏

−𝟎.𝟎𝟎𝟒 𝒆−𝟎.𝟒𝟔𝒔

𝟎.𝟕𝟓𝒔+𝟏

(−𝟎.𝟑𝑬−𝟑) 𝒆−𝟎.𝟑𝟓𝒔

𝟎.𝟕𝟓𝒔+𝟏

−𝟎.𝟎𝟎𝟕 𝒆−𝟎.𝟒𝟐𝒔

𝟏.𝟔𝟑𝟓𝒔+𝟏

(𝟎.𝟔𝑬−𝟑 𝒆−𝟎.𝟓𝟕𝒔)

𝟏.𝟑𝟐𝒔+𝟏

(−𝟎.𝟐𝑬−𝟑) 𝒆−𝟏𝟎.𝟎𝟏𝒔

𝟎.𝟐𝟕𝒔+𝟏

(−𝟔.𝟕𝑬−𝟓) 𝒆−𝟎.𝟏𝟓𝒔

𝟎.𝟐𝟕𝒔+𝟏

−𝟎.𝟑𝟐 𝒆−𝟎.𝟎𝟐𝒔

𝟎.𝟕𝟔𝒔+𝟏 ]
 
 
 
 
 
 

[

𝑴𝑽𝟏(𝒔)

𝑴𝑽𝟐(𝒔)
𝑴𝑽𝟑(𝒔)

𝑴𝑽𝟒(𝒔)

]                    …(5) 

 
A soft sensing model based on the Adaptive 

Neuro-Fuzzy Inference System (ANFIS) and Rough 
Set Theory (RST) were used to replacing physical 
sensors to improve the control system and maintain 
the purity of the products. Soft sensors are developed 
based on historical data on industrial operations from 
supervisory control and data acquisition (SCADA) 
associated with the distributed control system (DCS) 
or programmable logic control system (PLC) system. 
Moreover, the cascade controller based on the Neural 
Fuzzy Inference System (ANFIS) outperforms other 
conventional controllers (PID, FLC, FLC-GA, PID-
FIS) in terms of over/under, rise time and stabilization 
[56], [57] and [58]. Unmeasurable disturbances and in 
order to maintain the process in a stable manner, soft 
sensors (SS) based on nerves were used for better 
performance. These devices are characterized by their 
speed and low time delay [59]. Artificial neural network 
(ANN) was used and its ability to predict responses 
with rejection of disturbances was exploited. Several 
control strategies were used and connected to the 
(Simulink and Aspen Dynamics) program, where this 
method provided a short response time and good 
performance in rejecting disturbances and the ability 
to adapt to changes in the control environment [60], 
[61], [62] and [63]. 

 

2. Mathematical dynamic model 
Most distillation processes are multicomponent, 

but sometimes, to simplify the process, some of these 
columns can be approximated to binary or quasi-
binary mixtures. The purpose of this is to study the 
simplified case of them so that we can clarify the basic 
structure of the equations. The model is simplified 

under assumptions, no chemical reaction occurs inside 
the distillation column, feed at boiling point (saturated 
liquid), column is perfectly insolated, vapor holdup in 
each tray is neglected, liquid and vapor are in 
equilibrium on each tray, constant pressure (totally 
condensate), ideal trays, reboiler and condenser 
dynamics are neglected, liquid holdup varies from tray 
to tray and the relative volatility remain constant 
through the column and represented by this equation 

𝒚𝒏 =
𝜶𝒙𝒏

𝟏+(𝜶−𝟏)𝒙𝒏
          …(6) 

According to these assumptions, the dynamic of the 
distillation column can be represented by the following 
mass and heat balance equations [64], [65] 

Mass accumulation = mass flow rate in – mass 
flow rate out          …(7) 

Heat accumulation = Heat flow rate in – Heat 
flow rate out         …(8) 

Condenser and reflex drum 

𝒅𝑴𝑹𝑫

𝒅𝒕
= 𝑽𝟏 − (𝑹 + 𝑫)          …(9) 

𝒅𝑴𝑹𝑫𝒙𝑹𝑫

𝒅𝒕
= 𝑽𝟏𝒚𝟏 − (𝑹 + 𝑫)𝒙𝑹𝑫          …(10) 

𝑪𝑹𝑫
𝒅𝑴𝑹𝑫𝑻𝑹𝑫

𝒅𝒕
= 𝑯𝟏

𝑽𝑽𝟏 − 𝑯𝑹𝑫
𝑳 (𝑹 + 𝑫) − 𝑸𝒄 ….(11) 

For first tray (n=1) 

𝒅𝑴𝟏

𝒅𝒕
= 𝑹 + 𝑽𝟐 − 𝑽𝟏 − 𝑳𝟏           …(12) 

𝒅𝑴𝟏𝒙𝟏

𝒅𝒕
= 𝑹𝒙𝑹𝑫 + 𝑽𝟐𝒚𝟐 − 𝑽𝟏𝒚𝟏 − 𝑳𝟏𝒙𝟏    …(13) 

𝑪𝟏
𝒅𝑴𝟏𝑻𝟏

𝒅𝒕
= 𝑯𝑹𝑫

𝑳 𝑹 + 𝑯𝟐
𝑽𝑽𝟐 − 𝑯𝟏

𝑽𝑽𝟏 − 𝑯𝟏
𝑳𝑳𝟏 …(14) 
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For any tray (n) except first tray and feed tray 

𝒅𝑴𝒏

𝒅𝒕
= 𝑳𝒏−𝟏 + 𝑽𝒏+𝟏 − 𝑽𝒏 − 𝑳𝒏          …(15) 

𝒅𝑴𝒏𝒙𝒏

𝒅𝒕
= 𝑳𝒏−𝟏𝒙𝒏−𝟏 + 𝑽𝒏+𝟏𝒚𝒏+𝟏 − 𝑽𝒏𝒚𝒏 − 𝑳𝒏𝒙𝒏 

…(16) 

𝑪𝒏
𝒅𝑴𝒏𝑻𝒏

𝒅𝒕
= 𝑯𝒏−𝟏

𝑳 𝑳𝒏−𝟏 + 𝑯𝒏+𝟏
𝑽 𝑽𝒏+𝟏 − 𝑯𝒏

𝑽𝑽𝒏 −

𝑯𝒏
𝑳𝑳𝒏 …(17) 

For feed tray (nF) 

𝒅𝑴𝒏𝑭

𝒅𝒕
= 𝑳𝒏𝑭−𝟏 + 𝑽𝒏𝑭+𝟏 + 𝑭 − 𝑽𝒏𝑭 − 𝑳𝒏𝑭  …(18) 

𝒅𝑴𝒏𝑭𝑿𝒏𝑭

𝒅𝒕
= 𝑭𝒙𝑭 + 𝑳𝒏𝑭−𝟏𝒙𝒏𝑭−𝟏 + 𝑽𝒏𝑭+𝟏𝒚𝒏𝑭+𝟏 −

𝑽𝒏𝑭𝒚𝒏𝑭 − 𝑳𝒏𝑭𝒙𝒏𝑭         …(19) 

𝑪𝒏𝑭
𝒅𝑴𝒏𝑭𝑻𝒏𝑭

𝒅𝒕
= 𝑯𝒏𝑭−𝟏

𝑳 𝑳𝒏𝑭−𝟏 + 𝑯𝒏𝑭+𝟏
𝑽 𝑽𝒏𝑭+𝟏 +

𝑯𝑭𝑭 − 𝑯𝒏𝑭
𝑽 𝑽𝒏𝑭 − 𝑯𝒏𝑭

𝑳 𝑳𝒏𝑭         …(20) 

Foe last tray (n=N) 

𝒅𝑴𝑵

𝒅𝒕
= 𝑳𝑵−𝟏 + 𝑽𝑩 − 𝑽𝑵 − 𝑳𝑵          …(21) 

𝒅𝑴𝑵𝑿𝑵

𝒅𝒕
= 𝑳𝑵−𝟏𝒙𝑵−𝟏 + 𝑽𝑩𝒚𝑩 − 𝑽𝑵𝒚𝑵 − 𝑳𝑵𝒙𝑵 

…(22) 

𝐶𝑁
𝑑𝑀𝑁𝑇𝑁

𝑑𝑡
= 𝐻𝑁−1

𝐿 𝐿𝑁−1 + 𝐻𝐵
𝑉𝑉𝐵 − 𝐻𝑁

𝑉𝑉𝑁 − 𝐻𝑁
𝐿𝐿𝑁 

…(23) 

For reboiler and the bottom of column 

𝒅𝑴𝑩

𝒅𝒕
= 𝑳𝑵 − 𝑽𝑩 − 𝑩          …(24) 

𝒅𝑴𝑩𝑿𝑩

𝒅𝒕
= 𝑳𝑵𝒙𝑵 − 𝑽𝑩𝒚𝑩 − 𝑩𝒙𝑩          …(25) 

𝑪𝑩
𝒅𝑴𝑩𝑻𝑩

𝒅𝒕
= 𝑯𝑵

𝑳 𝑳𝑵 + 𝑸𝑹 − 𝑯𝑩
𝑽𝑽𝑩 − 𝑯𝑩

𝑳 𝑩    …(26) 

 

3. Conventional Controllers 
There are many types of controllers used for 

process control especially in refinery process such as 
proportional controllers (P), integral controllers (I) 
and derivative controllers (D) or combination of these 
controllers. By PID control, the physical parameters 
including temperature, pressure, flow rate, and level 
can all be managed. The PID is only an equation that 
the controller uses to evaluate the variables that it is 
trying to govern. For example, a feedback signal is sent 
to the controller when a process variable's (PV) 
temperature is monitored. The controller then 
compares the feedback signal to the set point (SP) to 
generate an error value. To analyze the value, one or 
more of the three proportional, integral, and derivative 
techniques are applied. In order to fix the error (E), 
the controller then issues the required commands or 
modifies the control variable (CV). An iterative 
process is formed by these steps [64], [66], [67] and 
[68]. Table 1 summarize the advantages and 
disadvantages of each controller. 

Table (1): Advantages and disadvantages of the 
controllers 

Controller Advantages Disadvantages 

Proportional 
(P) 

-Fast response 
-Minimize  
fluctuation 

-Large offset and 
doesn’t bring the 
system to the 
desired set point 

Integral (I) 
-No offset, return 
the system to its set 
point 

-Slow response 
 

Derivative (D) 
-Reducing error 
change and 
reducing oscillations 

-Having offset 
-Amplifies the 
noise signals  

Proportional- 
Integral (IP) 

-Improve damping 
-No offset 

-Reduce stability 
-Slow response 

Proportional- 
Derivative 
(PD) 

-Increased stability 
-Decreased settling 
and rising time 

-Steady-state 
error is not zero 
-Highly affected 
by external noise 

Proportional- 
Integral- 
Derivative 
(PID) 

-Steady-state error 
is zero 
-Moderate peak 
overshoot stability 

-Highly cost 
-Complexity in 
tuning and 
design 

 
Controller tuning is the process of determining the 

controller parameters that produce the desired output. 
The PID parameters can be determined either by a 
mathematical model of the system if it’s available, or, 
by the information is determined experimentally. 

There are many methods for tuning controllers 
including, the trial and error method, it relies on the 
principle of guessing and checking, this is done by 
adjusting the gain of the control unit (Kc) while 
keeping the integral derivative action at a minimum 
until the required outputs are obtained [64], [69]. 
Process Reaction Curve is used for an already existing 
system, where a stable system is disturbed by either 
changing the set point or the system variables, and a 
curve is obtained. These kinds of curves are produced 
in open-loop systems, which allow the disturbance to 
be recorded because there is no system control. 
Multiple parameters can be measured, such as 
transportation lag or dead time, and the final steady 
state value [64].  The Ziegler-Nichols (ZN) controller 
settings are a simple way to adjust PID controllers, as 
they provide reasonable performance for some loops. 
The ZN settings are considered a starting point from 
which the settings of other controllers are performed 

[67], [68] and [70]. Cohen‐Coon Method is an open-
loop method and is often used as an alternative to the 
Ziegler-Nichols (ZN) method, where it corrects the 
slow steady-state response of the Ziegler-Nichols 
(ZN) method when there is a delay in the process (a 
large dead time). It is used for first-order models with 
a high time delay [64], [68]. Tyreus-Luyben method its 
considered similar to the Ziegler-Nichols (ZN) 
method, but it provides safer setting and is suitable for 
controlling some chemical processes because the 
Ziegler-Nichols (ZN) method has a small damping 
coefficient with a small time constant, while the 
Tyreus-Luyben method gives a large damping 
coefficient with a large time constant [69]. 

 

4. Advanced Control 
There are many advanced process control 

strategies used in the refinery process such as Model 
Predictive Control, Adaptive Control, Feedback and 
feedforward, Fuzzy Logic Control (FLC) and Neural 
Network. 

Model predictive control (MPC) is considered the 
most advanced form of advanced process control. It is 



NJES 28(2)253-265, 2025 
Mahmood et al. 

260 

considered a way to deal with control problems such 
as multivariate, time delay, nonlinearity and open-loop 
instability. Model predictive control (MPC) aims to 
lower the performance standard going forward. The 
factory model is utilized to predict future behavior, 
and mathematical expressions are also employed to 
forecast system behavior and enhance the procedure 
within a given time frame Fig.6. 

The most common MPC techniques are Dynamic 
Matrix Control (DMC) and Modular Algorithmic 
Control (MAC), as they have been used in a large 
number of industrial processes and are highly efficient 
in dealing with constraints. There are several types, 
linear model predictive control (LMPC). It aims to 
improve performance by predicting future signals and 
optimizing control variable values. Nonlinear MPC 
(NMPC) it is employed when the linear model is 
insufficient to accurately represent the process. 

 
Figure (6): Basic concept of MPC. 

Quadratic Dynamic Matrix Control (QDMC) 
algorithm is considered the second generation of 
model predictive control, as it consists of a set of 
algorithms that provide a way to implement input and 
output restrictions [64] [71], [72], [73],  [74] and [75]. 

Adaptive control is a strategy that relies on 
constantly changing parameters. The parameters of the 
process model are set using online process 
identification and then the control action is derived 
and executed accordingly. Therefore, this type is used 
in systems that exhibit non-linear behavior or where 
the process structure is unknown [76]. 

Feedback and feedforward, Feedback includes 
receiving information about an action or behavior that 
occurred at a previous time and making a future 
change to address this event or behavior. Therefore, it 
focuses on what happened in the past and is useful in 
learning from mistakes and addressing weak points. 
Feed-forward includes instructions, suggestions, and 

visions to improve performance during the 
continuation of the event or behavior, and its work 
focuses on and expands future capabilities and 
solutions. Therefore, these insights are taken 
advantage of to achieve better performance in the 
future [77], [78]. 

Fuzzy Logic Control (FLC) is considered one of 
the most effective control designs based on 
intelligence that is used for multivariable and non-
linear industrial processes. It is used to overcome the 
difficulty faced by the designer in the process of 
modeling and simulating complex processes Fig.7. 
However, despite obtaining a relatively accurate model 
of a dynamic system, sometimes it is complex and 
difficult to implement in design and control processes, 
especially with traditional control methods [79], [80],  
[77], [81] and [82]. 

 
Figure (7): Structure of a Mamdani type of fuzzy 

logic controller. 
Classical logic differs from fuzzy logic in that the 

former relies on an inaccurate way of thinking to 
perform a basic task, as it relies on the ability to deduce 
an approximate solution to a specific problem based 
on inaccurate information. The concept of fuzzy logic 
(FL) was introduced in the name of fuzzy set theory as 
a programming language and is considered a basic 
branch of artificial intelligence. It constitutes a new era 
of control systems called fuzzy logic control (FLC), 
which has proven to be an effective way to control 
non-linear and complex systems [83], [84] and [85]. 
Zadeh is considered the founding father of this field, 
as he implicitly advanced the concept of approximate 
human reasoning to make effective decisions. He is 
primarily concerned with dealing with ambiguous 
qualitative quantities. The fuzzy logic controller (FLC) 
works based on converting an experience-based 
linguistic control strategy into an automatic control 
strategy utilizing fuzzy logic. To accomplish this, we 
must supplement the standard input-output data set 
with a front-end "fuzzifier" and a rear-end 
"defuzzifier." [86] [87] and [88]. It has been used in 
many applications, including robotics [89], [90], [91], 
[92], [93] and [94], many of chemical industries [95], 
[96], disk drives [97], fuzzy logic chips [91], [98],[99] 
and [100], electronic devices [92], [101] and[102], 
automated control [98], [103], model and helicopter 
landing systems [90], [92], [98] and [101], sensors [104], 
pattern recognition [103], [104], [105], [106] and [107] 
etc. 

Neural Network, in the forties of the twentieth 
century, researchers began to develop models of 
neurons cells that mimic the function of the human 
brain. Biological and psychological concepts were 
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merged to create the first artificial neural network 
(ANN) [108]. They were first employed as electronic 
circuits, but later on, they were modified to become a 
more adaptable method of computer simulation. The 
process of studying and developing the neural network 
continued because, of its ability to simulate the human 
brain, in addition to its ability to respond and learn. It 
has been used in many fields, such as prediction, 
control systems, pattern recognition and others. 
Learning and adaptation are the main focus of neural 
network research, which gives accuracy and robustness 
to the neural network (NN). The artificial neural 
network (ANN), which learns from a succession of 
sets of input data and output data that are supplied to 
it, assigns a set of input patterns to a set of output 
patterns in the modeling and prediction process. The 
network, through what it has learned, approximates 
and predicts outputs [62], [81], [109], [110], [111], 
[112], [113] and [114]. 

It's worthy to state that the process of controlling 
one variable is relatively easy. However, when a second 
pair of variables appear, the process becomes more 
complicated because an interference process occurs 
between the control loops. This happens because the 
inputs that are controlled affect more than the outputs 
that are controlled. Therefore, not only must a choice 
be made between the pairs used for control, but there 
may be interference, and in this case, the control 
becomes more difficult. To facilitate the control 
process, the process of decoupling variables is used 
using a computer system, where one control unit is set 
to adjust many control valves through a decoupling 
system Fig.8 [66], [78].  

 
Figure (8). Decoupling control strategy. 

 

5. Conclusions 
This research discusses the methods and types of 

control in the distillation tower. The process of 
controlling the distillation tower is considered one of 
the most difficult and complex processes due to the 
non-linearity of the process, the interference between 
control loops, and the large number of input and 
output variables. Several types of controllers have been 
studied, starting from simple traditional units 
(proportional, integral, derivative controllers (PID)) to 

more complex units such as model predictive 
controllers (MPC) of various types, fuzzy logic control 
(FLC), artificial neural networks (ANN), etc. 
Proportional, integral, and derivative controllers (PID) 
were more widely used in many control processes due 
to their simplicity and ease of principles, but these 
units were not effective in controlling systems due to 
multivariable with high interaction between control 
cycles, nonlinear behaviour and large gains, so 
advanced adaptive and predictive control systems were 
used because they relied on model predictive control 
and stochastic optimization algorithms. 

 
Nomenclature 

B Flow rate bottom product (kg/hr) 

C Heat capacity (kJ/kg °C) 

D Flow rate distillate product (kg/hr) 

F Feed flow rate (kg/hr) 

HF Feed enthalpy (kJ/hr) 

Hl Enthalpy of liquid phase (kJ/hr) 

Hv Enthalpy of vapor phase (kJ/hr) 

L Liquid flow rate (kg/hr) 

M Liquid holdup (kg) 

Qc Heat amount reduced by condenser (kJ/hr) 

QR Heat amount supply by reboiler (kJ/hr) 

R Reflux flowrate (kg/hr) 

T Temperature (°C) 

V Vapor flow rate (kg/hr) 

x Liquid concentration 

xF Feed concentration 

y Vapor concentration 

α Relative volatility 

Subscription 

1 Tray number one 

2 Tray number two 

B Bottom of the column 

RD Reflex drum 
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