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Abstract 
Millimeter Wave (mmWave) Massive Multiple Input Multiple Out 

(MIMO) system is a key technology for future wireless transmission. The 

system's architecture can differ based on the type of Analog-to-Digital 

Converters (ADCs) used at the receiver, whether they are all low-resolution 

or a mix of different resolutions (Mixed-ADCs).  Mixed-ADCs is a 

promising solution to achieve better performance than low-resolution 

ADC-only architectures by leveraging high-resolution ADCs to capture 

critical signal components while maintaining energy efficiency through low-

resolution ADCs. In this paper, the problem of channel estimation for this 

system architecture is taken into consideration. A novel compressive-

sensing based algorithm, that is called Approximate Conjugate Gradient 

Pursuit (ACGP), is proposed to estimate the channel coefficients. The 

performance of the proposed algorithm is investigated under varying 

system parameters, including different Signal-to-Noise Ratios (SNR), Radio 

Frequency (RF) chains, ADC resolutions, and numbers of observation 

frames. Matlab software was used to perform numerical simulations. The 

results demonstrated that mixed-ADCs architecture outperforms low 

resolutions only in performance. It was found that ACGP achieves lower 

Minimum Mean Squared Error (MMSE) compared to Orthogonal 

Matching Pursuit (OMP) and Least Square (LS), particularly in low SNR 

conditions showcasing its robustness and efficiency in signal 

reconstruction, achieving an average enhancement of 30% to 50% at 

moderate SNR levels. While OMP exhibited faster computation times 

under various number of observation frames, ACGP maintained stable 

computational performance, with a slight increase in computation time. For 

applications where accurate channel estimation is required under noisy 

environment, the proposed algorithm is an effective choice to meet such 

requirements.  

Keywords: Massive MIMO, mmWave, Channel Estimation, 6G. 

لى الرقمية ذات الدقة المختلطة في  التماثليةولات لمعمارية المحالقناة ل تخمين  نظاما 

 باس تخدام خوارزمية الملاحقة التقريبية للاتجاه المترافق الهوائيات المتعددة الهائلة
 انس لطيف محمود ، ياسين ايمن محمد

 الخلاصة: 

( الضخمة  المتعددة  الهوائيات  )Massive MIMOنظام  المليمترية  الموجات  بتقنية   )mmWave  تقنية يعتبر   )

لى الرقمية )  التماثليمحورية لنقل البيانات لاسلكياً في المس تقبل. يمكن أ ن تختلف بنية النظام بناءً على المحولات   (، ADCsا 

لى الرقمي )  التماثليالمحول  سواء كانت هذه المحولات جميعها ذات دقة منخفضة أ و مزيج من الدقات المختلفة.   (  ADCا 

لى الرقمي    التماثليالمحول  ذو الدقة المختلطة هو حل واعد لتحقيق أ داء أ فضل من المعمارية ذات   الدقة المنخفضة فقط  ذي  ا 

( المليمترية  الموجات  اتصالات  )mmWaveفي  الضخمة  المتعددة  الهوائيات  بنظام   )Massive MIMO  هذه في   .)
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مشكلة   تناول  يتم  النظاممعاملات    تخمين الورقة،  لهذا  المختلطةمعمارية  ذو    القناة  جديدة الدقة  خوارزمية  اقتراح  يتم   .

الانضغاطي الاستشعار  على  )(compressive-sensing)تعتمد  تسمى   ،Approximate Conjugate 

Gradient Pursuit (ACGP  ، معاملات القناة. تم التحقيق في أ داء الخوارزمية المقترحة تحت ظروف نظام    لتخمين

)مختلفة الضوضاء  لى  ا  الا شارة  نسب  ذلك  في  بما   ،SNR( اللاسلكي  التردد  سلاسل  المختلفة،   )RF  المحولات دقة   ،)

لى الرقمية )  التماثلية ذات الدقة   ADCأ ظهرت النتائج الرقمية أ ن معمارية الـ    .الا شارات التي يتم رصدها(، وعدد  ADCا 

متوسط   فرقتحقق    ACGPوارزمية  المختلطة تتفوق في ال داء على المعمارية ذات الدقة المنخفضة فقط. ووجد أ ن خ

( )MMSEأ دنى  بخوارزمية  مقارنة   )OMP( وخوارزمية   )LS  الـ ظروف  في  خاصة   ،)SNR    يظهر مما  المنخفضة، 

الا شارات  أ وقات حساب أ سرع تحت عدد مختلف من    OMPالا شارة. بينما أ ظهرت خوارزمية    تخمين قوتها وكفاءتها في  

. للتطبيقات التي التخمين زيادة طفيفة فقط في وقت  عل أ داء متوازن مع    ACGPخوارزمية    حافظت،  التي تم رصدها

ن الخوارزمية المقترحة تعتبر اختيارًا فعالًا لتلبية هذه المتطلبات. ظروفتتطلب تقدير قناة دقيق في   ضوضاء عالية، فا 

1. Introduction 
The Massive multiple-input multiple output 

(MIMO) Millimeter wave (mmWave) wireless 
communication is a primary enabler for sixth 
generation (6G) wireless transmissions [1], [2]. The 
system architecture promises to efficiently exploit the 
available bandwidth at millimeter wave’s spectrum (20-
300 GHz) [3], [4], [5]. The main concern in mmWave 
is the significant path loss incurred at a much higher 
rate than the lower frequency bands. Nevertheless, 
large scale antenna arrays (Massive) utilizing 
beamforming can improve coverage and reduce 
interference and power consumption [6]. The use of 
the mmWave frequency bands increase the 
requirements of the hardware architecture as high-
resolution analog-to-digital converters (ADCs) are 
cost-ineffective. One solution that has been proposed 
in the literature [6], [7] is to use hybrid precoding 
structure, i.e., reducing the number of radio frequency 
(RF) chains and eventually, using a smaller number of 
ADCs. An alternative solution is to use low resolution 
ADCs only, which immensely reduce cost and power 
requirements at the expense of the severe quantization 
noise. 

Over the last decade, there has been a huge 
number of channel estimation algorithms, tackling the 
channel estimation problem in Massive MIMO 
mmWave communications. The channel estimation 
can be categorized according to the architecture of the 
system. In [8], [9], high resolution ADCs were used in 
the system architecture whereas in [5], [10], fully-digital 
architecture was implemented with low resolution 
ADCs. Implementing fully-digital structure, i.e., each 
antenna is connected to a separate RF chain, is limited 
by cost and complexity when the number of antennas 
rises to massive. On the other hand, while using low 
resolution ADCs is a fit for fully-digital structure, it 
causes a severe quantization noise problem in the 
hybrid precoding structure. Using high and low 
resolutions ADCs could alleviate the quantization 
noise severity and enhance the beamforming 
performance [11], [12]. This mixed-ADC architecture 
has been proposed as cost-effective and power 
efficient since the majority of antennas are connected 
to low resolution ADCs while the minority are 
connected to high resolution ADCs. 

The mmWave channel has few non-zero elements, 
i.e., the channel matrix happens to be very sparse. As 
a result, the channel estimation problem is naturally 
solved using compressed sensing technology [13], [14], 
[15], [16]. In [13] and [14], Orthogonal matching 
Pursuit was proposed to recover the mmWave 
Massive MIMO channel matrix. The authors in [16], 
[17] proposed to use time and frequency domain 
methods for wideband channel recovery. In [18], the 
authors used a neural network iterative-weighting and 
learning based scheme to estimate the angles of 
arrival/departure of the array response vectors. In [19], 
CSI sensing and recovery network were combined to 
have a better real-time CSI feedback architecture. In 
[20], iterative algorithms (Approximate Message 
Passing, AMP) and Deep Learning (DL) schemes were 
combined to develop a learned denoising based AMP, 
that is called, LDAMP. Lastly, to reduce the overall 
system overhear, a DL based approach was proposed 
in [21].  

There have been numerous studies on the 
performance of the mixed-ADCs architecture, 
whereas the channel estimation problem has not been 
tackled sufficiently yet. In this paper, we propose a 
compressed sensing algorithm named Approximate 
Conjugate Gradient Pursuit (ACGP), designed to 
reduce complexity while maintaining robust 
performance. Unlike traditional algorithms such as 
Orthogonal Matching Pursuit (OMP) and Least 
Squares (LS), ACGP leverages approximated 
conjugate and gradient directions, which enhances its 
efficiency in estimating sparse mmWave channels 
under mixed-ADC architectures. This facilitates for 
improved channel estimation, particularly in low-SNR 
environments, while significantly reducing 
computational overhead compared to existing 
methods. The algorithm's performance is 
benchmarked against OMP [1] and LS to highlight its 
advantages.  

The main contributions of this paper are 
summarized as follows: 

• Proposal of ACGP Algorithm: Introduces a novel 
compressed sensing algorithm, Approximate 
Conjugate Gradient Pursuit (ACGP), for channel 
estimation in mmWave massive MIMO systems with 
mixed-ADC architectures. 

http://doi.org/10.29194/NJES.28020296
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• Enhanced Estimation Efficiency: Leverages 
approximated conjugate and gradient directions to 
achieve accurate sparse channel estimation, 
particularly under challenging low-SNR conditions, 
with reduced computational complexity. 

• Extensive Performance Analysis: Evaluates ACGP 
under various system parameters, such as SNR levels, 
RF chains, ADC resolutions, and observation frames, 
demonstrating its robustness across diverse scenarios. 

• Superior to Baseline Methods: Benchmarks ACGP 
against traditional algorithms like OMP and LS, 
showing significantly improved MMSE performance 
and reduced computational overhead. 

• Mixed-ADC Architecture Benefits: Highlights the 
effectiveness of mixed-ADC architectures over low-
resolution ADC-only systems, offering improved 
channel estimation accuracy while preserving energy 
efficiency. 

The rest of the paper is organized as follows. 
Section 2 illustrates the proposed architecture of the 
Massive MIMO system. Section 3 delves through the 
steps of the proposed algorithm. Section 4 provides 
the numerical and simulation analysis of the proposed 
system and algorithm. Finally, the research is 
concluded in section 5. 

 

2. System Model 
A mmWave Massive MIMO communication 

system is considered, provided with a hybrid 
beamforming architecture and mixed-ADCs similar to 
the system shown in Fig.1. The number of antennas 

utilized for the BS and MS are 𝑁𝐵𝑡 and 𝑁𝑀𝑟 , 

respectively. 𝐿 denotes the number of RF chains used 
at both ends. The data streams’ number is denoted by 

𝑁𝑠 and it is assumed to be equal to 𝐿.  

 

 
Figure (1): Single user Massive MIMO with mixed-ADCs architecture 

 The BS is provided with 𝐿 × 𝑁𝑠 baseband 

precoder 𝐅BB and is succeeded by 𝑁𝐵𝑡 × 𝐿  RF 

precoder 𝐅RF. The signal at the 𝑚𝑡ℎ time after the 
precoder can be written as [1]: 
 

𝐱𝑚 = 𝐅m 𝐬𝑚 … (1) 

 

 Where 𝐅 =  𝐅RF 𝐅BB , and 𝐬𝑚 denotes the 

transmitted symbols at the 𝑚𝑡ℎ time. For the purpose 

of normalization, the vector  𝐬 should de be 

implemented such that E [𝐬𝐬𝑯] = (
1

𝑵𝒔
)𝑰𝑵𝒔

. The 

received vector at the  𝑚𝑡ℎ time can be written in the 
form [1]: 
 

𝐫𝑚 = √𝑃 𝐇 𝐅𝑚  𝐬𝑚 + 𝐧𝑚 … (2) 

 Where the mmWave channel is 𝐇 with 𝑁𝑀𝑟× 𝑁𝐵𝑡 

dimensions, and 𝐧𝑚 ~ 𝒩(0, 𝜎2 𝐈𝑁𝑀𝑟
) denotes the 

additive white Gaussian noise. 𝑃 is the transmission 

power The combiner 𝐖m at the MS is found by the 

product of the RF and BS combiners 𝐖RF and  𝐖BB 
to have the below received signal [1]: 
 

𝐲𝑚 = √P 𝐖m
H 𝐇 𝐅m 𝐬𝑚 + 𝐖m

H 𝐧𝑚 … (3) 

  

A mixed-ADCs system architecture is considered at 
the MS side. The MS is equipped with high- and low-
resolution ADCs where the majority of the antennas 
are connected to low resolution ADCs whereas the 
minority are connected to high resolution ADCs.  It is 

supposed that 𝑉0 =  ℒ 𝑁𝑀𝑟 represents the number of 
antennas which are connected to the high-resolution 

ADCs and 𝑉1 = (1 − ℒ) 𝑁𝑀𝑟  represents the number 
of antennas connected to the low-resolution ADCs, 

resembling the majority of antennas. ℒ can be taken as 
a percentage of the total number of antennas. The 

overall received vector 𝐘 can be written as [1]: 
 

𝐘  = [
𝐘0

�̌�1
]=   [

𝐘0

𝒬(𝐘1)
] 

= [𝒚[1], … , 𝒚[𝑉0], 𝒬(𝒚[𝑉0 + 1]), … , 𝒬(𝒚[𝑉1])]𝑇 

  
 It is assumed that the high-resolution ADCs has 
negligible quantization noise as such low-resolution 
ADCs quantization noise contribution are taken into 
account only. The mmWave channel is modeled as 

geometric and a limited number of 𝐾 scatterers is 
assumed, where each scatterer is proposed to 
contribute to a single propagation path between the BS 

and the MS. Hence, the 𝑢𝑡ℎ tap channel 𝐇𝑢 can be 
determined as [23]: 
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𝐇𝑢 =  √
𝑁𝑀𝑟𝑁𝐵𝑡

𝜌
∑ 𝛼𝑘  а𝑀𝑆(𝜃𝑘) а𝐵𝑆

𝐻(

𝐾

𝑘=1

𝜙𝑘) … (4) 

 

 Where the average path-loss is denoted by 𝜌. And 

the complex gain of the 𝑘𝑡ℎ path is referred to as 𝛼𝑘, 

it is assumed to have a Rayleigh distribution, i.e., 𝛼𝑘 

~ 𝒩(0, 𝑃𝑅
̅̅ ̅), 𝑘 = 1,2, ..., 𝐾 with the average power 

gain 𝑃𝑅
̅̅ ̅. 𝜃𝑘 and 𝜙𝑘 represent the azimuth angles of 

arrival and departure, respectively. They are assumed 
to be uniformly distributed between 0 and 2π. Lastly, 

а𝑀𝑆(𝜃𝑘) and а𝐵𝑆(𝜙𝑘) are the array response vectors 
at the BS and MS, respectively. The array response 
vector at the MS can be formulated as [23]: 
 

а𝑀𝑆(𝜃𝑘) = √
1

𝑁𝑀𝑟

 [
1, 𝑒𝑗(

2π
λ

)𝑑𝑠𝑖𝑛(𝜃𝑘)
, … .

 … , 𝑒𝑗(𝑁𝑀𝑟−1)(
2π
λ

)𝑑𝑠𝑖𝑛(𝜃𝑘)
]

𝑇

 … (5) 

 

 Where λ refers to the wavelength, and 𝑑 denotes 
the antenna elements spacing. The array response 
vector at the BS can be determined in the same manner 
as in eq. (5). In this paper, it is assumed that any prior 
knowledge of the channel is not available. The channel 
can be reformulated as [1], [24]: 
 

𝐇u =  𝐀𝐑 diag(𝛂) 𝐀𝐓
H  … (6) 

Where  

𝜶 =  √
𝑁𝑀𝑟𝑁𝐵𝑡

𝜌
 [𝛼1, 𝛼2, … . . , 𝛼𝐾]  

𝐀T = [а𝑇(𝜙1), а𝑇(𝜙2), … . , а𝑇(𝜙𝐾)]  

𝐀R = [а𝑅(𝜃1), а𝑅(𝜃2), … . . , а𝑅(𝜃𝐾)]  

  
 Combining all the narrowband channels of all 
clusters leads to the wideband channel model that can 
be simplified as [8]: 
 

𝐇 =  ∑ 𝐇𝑢

𝑁𝑐

𝑢=1

  … (7) 

 

Where 𝑁𝑐 refers to the number of clusters. 

 The received matrix (𝐲𝑚) before quantization is 
formulated as [1], [25]: 
 

𝐲𝑚 = √𝑃 𝐖m
𝐻  𝐇 𝐅m 𝐬𝑚 +  𝐖m

𝐻  𝐧𝑚 

… (8) 
         =  √𝑃 (𝐒m

T  𝐅𝑚
T  ⨂ 𝐖

T

𝐻
)  vec(𝐇)+ 𝐍𝑚 

 

Where 𝐍𝑚 = 𝐖m
𝐻  𝐧𝑚. As derived in [1], [25], the 

overall received signal consisting of all 𝑀 frames can 
be written in the form [1], [25]: 

𝐘 = √𝑃 𝚿 𝐳 +   𝐍 

… (9) 
𝐘 = √𝑃 𝛟 𝐀D 𝐳 +   𝐍 

 

 Where 𝐲 are the obtainable observations, 𝚿 is the 

sensing matrix (𝚿 = 𝛟 𝐀D), and 𝛟𝑚 is the 

measurement matrix of the 𝑚𝑡ℎ time frame (𝛟𝑚 =

𝐒m
T  𝐅𝑚

T  ⨂ 𝐖
T

𝐻
 ). 𝐀D is a dictionary matrix or sparse 

basis matrix whose elements can be determined by 
utilizing all the AOA/AOD’s possible values [1], [25].  
The paths’ gains of the quantized directions is denoted 

by the vector 𝒛. The mmWave Massive MIMO 
channel is very sparse due to the lack of line-of-sight 

components. The sensing matrix 𝚿 is used to predict 

the sequence 𝐳. Then, by utilizing the basis matrix 𝑨𝐷 , 
we can recover the channel matrix.  
 

3. Approximate Conjugate Gradient 
Pursuit Algorithm (ACGP) 

To contextualize the performance of the proposed 
Approximate Conjugate Gradient Pursuit (ACGP) 
algorithm, it is essential to compare it with established 
baseline methods such as Orthogonal Matching 
Pursuit (OMP) and Least Squares (LS) algorithms [1]. 
These algorithms represent standard approaches in 
compressive sensing and channel estimation, each with 
its unique strengths and limitations. 

OMP algorithm is a traditional greedy algorithm 
widely used in compressive sensing for signal 
reconstruction. It iteratively selects the atom with the 
highest correlation to the current residual, leveraging 
the signal's sparsity. By orthogonalizing the selected 
atoms during execution, OMP minimizes the required 
number of measurements and iterations, making it 
computationally efficient. 

LS algorithm, on the other hand, relies on 
straightforward mathematical operations such as 
matrix inversion and multiplication. This simplicity 
makes LS easy to implement with fewer parameters. 
However, LS does not account for the effects of noise, 
leading to inaccuracies in channel estimation, 
particularly in low signal-to-noise ratio (SNR) 
conditions. 

In this paper, we propose using a different 
implementation of Orthogonal Matching Pursuits 
(OMP). The computational complexity of OMP 
comes from using the pseudo-inverse operation in 
each iteration of the algorithm to calculate the 

recovered vector 𝐳. This operation is time consuming 
and requires excessive memory, hence, efficient 
implementation should be developed. The first 
efficient implementation is using QR factorization 
while the second one, which is considered in this 
paper, is using directional updates. The latter one has 
similar computational complexity to the QR 
factorization but if offers: better stability, less storage 
requirements, and a smaller number of multiplications. 
However, while the directional updates provide 
computational efficiency, the approximations involved 
in this approach may lead to performance deficiencies 
in certain scenarios. For example, in cases where the 
sensing matrix columns exhibit high correlation, the 
index selection process may be less reliable, affecting 
the quality of the reconstruction. Additionally, when 
the number of iterations is limited, the algorithm may 
not fully converge, leading to suboptimal channel 
estimation. 

The algorithm starts by firstly defining 𝚿 sensing 
matrix, which maps the high-dimensional sparse signal 



NJES 28(2)296-303, 2025 
Mohammed & Mahmood 

 
300 

to a lower-dimensional observed signal while 
preserving sufficient information for reconstruction. It 

also defines the observation vector 𝐲, the length of the 

recovered vector 𝐳, and the number of iterations 

𝐦𝐚𝐱𝐢. Then, the algorithm initializes the residual 

vector 𝒓0, which represents the difference between the 
observed signal and the reconstructed signal, the 

recovered vector 𝐳𝟎, and the indexing variable 𝚪0. The 
algorithm, then, finds the correlation between the 

Hermitian of sensing matrix 𝚿H and the residual 𝒓n−1. 
Next, the algorithm searches for the index referring to 
the maximum correlation, performs the union of the 

previous indexing symbol 𝚪𝑛−1, and assigns this value 

to 𝚪𝑛. After that, the direction 𝒅𝚪𝑛
𝑛  is updated for all 

𝑛,  (except when 𝑛=1, the first direction 𝒅𝚪1
1  = 1) by 

combining the previous update direction (𝑏1 𝒅𝚪𝑛
𝑛−1) 

and the current gradient direction (𝒈𝚪𝑛), which 
indicates the direction of the steepest descent in the 
error space. This direction helps adjust the 
reconstructed signal in each iteration by refining the 
estimate toward a more accurate solution. The optimal 

step-size 𝑎𝑛 is, then, calculated and multiplied by the 
new direction to find the updated values of the vector 

𝒛𝒏. The algorithm runs through the steps until the 
maximum number of iterations is reached.  Finally, the 

vector 𝐳 is utilized to estimate the channel matrix 𝐇 in 
a vectorized form h. The algorithm is summarized in 
Algorithm 1.  

Following the algorithm steps, the computational 
complexity of the proposed ACGP algorithm can be 

upper bounded by 𝒪(𝐾𝑠𝑁𝚿𝑀𝚿), where 𝐾𝑠 is the 

sparsity level, 𝑁𝚿 is the number of columns in the 

sensing matrix, and 𝑀𝚿 is the number of rows. In 
comparison, the LS algorithm has a complexity of 

𝒪(𝑁𝚿
3 )+𝒪( 𝑀𝚿𝑁𝚿

2 ), while the OMP algorithm exhibits 

a complexity of  𝒪(𝐾𝑠
3) + 𝒪( 𝑀𝚿𝐾𝑠

2)+ 𝒪(𝐾𝑠 𝑁𝚿𝑀𝚿). 
These results highlight that the ACGP algorithm 
incurs significantly lower computational overhead, 
particularly in terms of the number of operations 
required, making it more efficient than both LS and 
OMP in practical implementations. 
 

Algorithm 1: Approximate Conjugate Gradient 
Pursuit algorithm (ACGP) 

Input: The sensing matrix is 𝚿, observations vector 𝐲, 

the length of the approximated vector 𝐳, and the 

number of iterations (𝐦𝐚𝐱𝐢) 

1. Initialize: 𝒓0 = 𝒚, 𝐳𝟎 = 0, 𝚪0 =  ∅ 

2. for 𝑛 = 1;  𝑛 ∶=  𝑛 + 1 till maxi 

3. 𝒈𝑛 =  𝚿H 𝒓𝑛−1   
4. 𝚪𝑛 =   𝚪𝑛−1  ⋃  { arg𝑖  max|𝒈𝑖|}   
5. if 𝑛 = 1 

- 𝒅𝚪1
1  = 1  

6. if 𝑛 ≠ 1 

- 𝑏1 =  − 𝒄𝑛−1∗
𝚿𝚪𝑛𝒈𝚪𝑛/ (𝒄𝑛−1∗

 𝒄𝑛−1) 

Where  𝒄𝑛 =  𝚿𝚪𝑛  𝒅𝚪𝑛
𝑛  

- 𝒅𝚪𝑛
𝑛 =  𝒈𝚪𝑛 −  𝑏1 𝒅𝚪𝑛

𝑛−1 

7. 𝑎𝑛 =   𝒓𝑛∗𝒄𝑛/ (𝒄𝑛∗ 𝒄𝑛) 

8. 𝒛𝒏 ∶= 𝒛𝚪𝑛
𝑛 =  𝒛𝚪𝑛

𝑛−1 +  𝑎𝑛 𝒅𝚪𝑛
𝑛  

9. 𝒓𝑛 =  𝒓𝑛−1 − 𝑎𝑛 𝒄𝑛 
10. end for 

11. 𝒛 =  𝒛𝒏 

12. 𝐡 =  𝐀D 𝐳 

13. Output: 𝐡 
 

4. Numerical Results 
In this section, we compare the performance of the 

proposed algorithm with OMP and LS algorithms 
presented in [1] in terms of the achieved Minimum 
Mean Squared Error (MMSE). The system parameters 

are as follows: 𝐿Bt = 𝑁𝑠 = 𝐿Mr = 4,  𝑁𝑀𝑟 = 16, 

𝑁𝑐 = 4, 𝑁𝐵𝑡 = 32, 𝐾 = 2 (number of paths in each 

cluster), 𝑁 = 16 symbols per frame, 𝑀 = 80 number 

of observations or frames, ℒ = 0.2. We will refer to 
any change of parameters as proceeded in this section.  

Fig.2 depicts the performance comparison of the 
proposed algorithm (ACGP) with OMP for different 
radio frequency (RF) chains in terms of (MMSE) 
across varying Signal-to-Noise Ratios (SNR). The 
results show how the algorithms behave under 
different noise conditions. Each line represents a 
specific algorithm and RF combination: OMP with 
RF=1 (green triangles), ACGP with RF=1 (purple 
triangles), OMP with RF=2 (blue circles), ACGP with 
RF=2 (yellow circles), OMP with RF=4 (black dashed 
line with triangles), and ACGP with RF=4 (pink 
diamonds). As SNR increases, MMSE decreases for all 
algorithms, indicating improved estimation accuracy. 
Notably, ACGP with higher RFs (RF=4, RF=2) 
consistently achieves lower MMSE compared to 
OMP, especially at lower SNRs, depicting its 
robustness and superior performance in noisy 
environments. 

A performance comparison is presented in terms 
of MMSE as a function of SNR for different ADC 
resolutions is illustrated in Fig.3. The algorithms 
compared are LS, OMP, and ACGP, each evaluated 
with 1-bit, 2-bit, 3-bit, and 4-bit ADCs. The plot 
indicates that, across all ADC resolutions, MMSE 
decreases as SNR increases, highlighting improved 
estimation accuracy at higher SNR levels. As it can be 
observed, ACGP consistently outperforms both OMP 
and LS across different ADC resolutions. The MMSE 
values for higher-resolution ADCs (4-bit) are 
significantly lower compared to those for 1-bit ADCs, 
depicting the advantage of higher ADC resolution in 
reducing estimation error. The results underscore the 
robustness of ACGP, especially with increased ADC 
resolution, in achieving lower MMSE, thus providing 
more accurate signal reconstruction under various 
noise conditions. 

Fig.4 shows a comparing between mixed-ADCs 
architecture and low resolutions only architecture.  
The total number of high-resolution ADCs is assumed 

to be 13 since the percentage is ℒ = 0.2. It can be 
observed that the impact of the proposed architecture 
is considerable. All algorithms show an enhancement 
in performance with the mixed resolution architecture. 
ACGP marks a better performance than OMP and LS, 
achieving lower MMSE for the whole SNR ranging 
from -10 to 10. 

The impact of ADC resolution (in bits) on the 
performance of OMP and ACGP algorithms is 
demonstrated in Fig.5. The results indicate that for 
both algorithms, increasing the number of bits results 
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in a significant reduction in MMSE, especially when 
changing from 1-bit to 4-bit ADCs. At 0 dB SNR, 
ACGP consistently outperforms OMP, achieving 
lower MMSE across all bit resolutions. Similarly, at 10 
dB SNR, both algorithms exhibit improved 
performance with increased ADC resolution, but 
ACGP again demonstrates superior accuracy 
compared to OMP until the resolution becomes 3 bits. 
The curves show negligible returns beyond 4 bits, 
where the reduction in MMSE becomes less 
promising. This indicates that while higher bit 
resolutions enhance performance, the most gains in 
essence are achieved within the 1-bit to 4-bit range, 
particularly for ACGP under both SNR conditions. 

 
Figure (2): The MMSE of the proposed algorithm as 

compared with OMP for different RF chains 

Figure (3): The algorithms achievable MMSE for 
different ADC resolutions 

Figure (4): Performance comparison between 
mixed-ADCs and low resolutions ADCs only 

Figure (5): Performance comparison of the mixed-
ADCs for different number of low resolutions ADCs 

bits 

Figure (6): Computation time comparison for 
different number of frames (M) 

Finally, Fig.6 shows a comparison in computation 
time of ACGP and OMP for different numbers of 
frames (M). It is clearly noticed that although OMP 
seems to be more efficient in processing, as for 
different number of observation frames (M), ACGP 
depicts a stable and almost constant difference in time. 
Despite OMP's faster computation times, ACGP 
offers significant advantages in terms of accuracy and 
robustness, particularly in noisy environments.  

 

5. Conclusion 
In this paper, the channel estimation problem for 

mmWave Massive MIMO with mixed-ADCs is 
studied. A compressed-sensing based algorithm is 
proposed and its performance is evaluated. Simulation 
results showed that mixed-ADC architectures 
significantly outperform low-resolution systems, with 
ACGP yielding lower Minimum Mean Squared Error 
(MMSE) than Orthogonal Matching Pursuit (OMP) 
and Least Squares (LS), particularly under low SNR 
conditions, achieving an average performance 
improvement of 30% to 50% at moderate SNR levels. 
The improved channel estimation accuracy provided 
by ACGP has broader implications for mmWave 
Massive MIMO systems. By delivering more reliable 
channel estimates, ACGP enables more effective 
beamforming and resource allocation, which are 
critical for enhancing overall system capacity, spectral 
efficiency, and energy efficiency. Although ACGP 
incurred a slight increase in computation time, it is 
considered less complex computation- and storage-
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wise. It is also consistent accuracy and robustness 
make it efficient in massive MIMO systems. Future 
work could focus on further optimizations of ACGP 
to reduce computation time while preserving its high 
performance. One potential approach involves 
leveraging parallel processing techniques to expedite 
computations, particularly for large-scale systems. 
Incorporating machine learning techniques, such as 
deep neural networks, could also enhance the 
initialization phase or guide the selection of gradient 
directions, thereby improving both accuracy and 
efficiency.  
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