Al-Nahrain Journal for Engineering Sciences NJES 28(2)296-303, 2025
doi.org/10.29194/NJES.28020296

http:

Channel Estimation for Mixed-Analog to Digital Converters
Architecture in Massive MIMO Architecture Using Approximate
Conjugate Gradient Pursuit Algorithm

Yaseen A. Mohammed', Anas I.. Mahmood*’

Authors affiliations:

1) Department of Electronic
and Communications
Engineering, Al-Nahrain
University, Baghdad-Iraq.
st.yaseen.aiman.mohammed(@na
hrainuniv.edu.iq

2%¥) Department of Electronic
and Communications
Engineering, Al-Nahrain
University, Baghdad-Iraq.

anas.lateef.1@nahrainuniv.edui
q

Paper History:
Received: 2204 July 2024

Revised: 3 Dec. 2024

Accepted: 17™ Dec. 2024

Abstract

Millimeter Wave (mmWave) Massive Multiple Input Multiple Out
(MIMO) system is a key technology for future wireless transmission. The
system's architecture can differ based on the type of Analog-to-Digital
Converters (ADCs) used at the receiver, whether they are all low-resolution
or a mix of different resolutions (Mixed-ADCs). Mixed-ADCs is a
promising solution to achieve better performance than low-resolution
ADC-only architectures by leveraging high-resolution ADCs to capture
critical signal components while maintaining energy efficiency through low-
resolution ADCs. In this paper, the problem of channel estimation for this
system architecture is taken into consideration. A novel compressive-
sensing based algorithm, that is called Approximate Conjugate Gradient
Pursuit (ACGP), is proposed to estimate the channel coefficients. The
performance of the proposed algorithm is investigated under varying
system parameters, including different Signal-to-Noise Ratios (SNR), Radio
Frequency (RF) chains, ADC resolutions, and numbers of observation
frames. Matlab software was used to perform numerical simulations. The
results demonstrated that mixed-ADCs architecture outperforms low
resolutions only in performance. It was found that ACGP achieves lower
Minimum Mean Squared Error (MMSE) compared to Orthogonal
Matching Pursuit (OMP) and Least Square (LS), particularly in low SNR
conditions showcasing its robustness and efficiency signal
reconstruction, achieving an average enhancement of 30% to 50% at
moderate SNR levels. While OMP exhibited faster computation times
under various number of observation frames, ACGP maintained stable
computational performance, with a slight increase in computation time. For

in

applications where accurate channel estimation is required under noisy
environment, the proposed algorithm is an effective choice to meet such
requirements.

Keywords: Massive MIMO, mmWave, Channel Estimation, 6G.
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1. Introduction

The Massive multiple-input multiple output
MIMO) Millimeter wave (mmWave) witeless
communication is a primary enabler for sixth
generation (6G) wireless transmissions [1], [2]. The
system architecture promises to efficiently exploit the
available bandwidth at millimeter wave’s spectrum (20-
300 GHz) [3], [4], [5]- The main concern in mmWave
is the significant path loss incurred at a much higher
rate than the lower frequency bands. Nevertheless,
large scale antenna arrays (Massive) utilizing
beamforming can improve coverage and reduce
interference and power consumption [6]. The use of
the mmWave frequency bands increase the
requirements of the hardware architecture as high-
resolution analog-to-digital converters (ADCs) are
cost-ineffective. One solution that has been proposed
in the literature [6], [7] is to use hybrid precoding
structure, i.e., reducing the number of radio frequency
(RF) chains and eventually, using a smaller number of
ADCs. An alternative solution is to use low resolution
ADC:s only, which immensely reduce cost and power
requirements at the expense of the severe quantization
noise.

Over the last decade, there has been a huge
number of channel estimation algorithms, tackling the
channel estimation problem in Massive MIMO
mmWave communications. The channel estimation
can be categorized according to the architecture of the
system. In [8], [9], high resolution ADCs were used in
the system architecture whereas in [5], [10], fully-digital
architecture was implemented with low resolution
ADCGs. Implementing fully-digital structure, i.e., each
antenna is connected to a separate RF chain, is limited
by cost and complexity when the number of antennas
rises to massive. On the other hand, while using low
resolution ADCs is a fit for fully-digital structure, it
causes a severe quantization noise problem in the
hybrid precoding structure. Using high and low
resolutions ADCs could alleviate the quantization
noise severity and enhance the beamforming
performance [11], [12]. This mixed-ADC architecture
has been proposed as cost-effective and power
efficient since the majority of antennas are connected
to low resolution ADCs while the minority are
connected to high resolution ADCs.
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The mmWave channel has few non-zero elements,
i.e., the channel matrix happens to be very sparse. As
a result, the channel estimation problem is naturally
solved using compressed sensing technology [13], [14],
[15], [16]. In [13] and [14], Orthogonal matching
Pursuit was proposed to recover the mmWave
Massive MIMO channel matrix. The authors in [10],
[17] proposed to use time and frequency domain
methods for wideband channel recovery. In [18], the
authors used a neural network iterative-weighting and
learning based scheme to estimate the angles of
arrival/departute of the array response vectors. In [19],
CSI sensing and recovery network were combined to
have a better real-time CSI feedback architecture. In
[20], iterative algorithms (Approximate Message
Passing, AMP) and Deep Learning (DL) schemes were
combined to develop a learned denoising based AMP,
that is called, LDAMP. Lastly, to reduce the overall
system overhear, a DL based approach was proposed

in [21].
There have been numerous studies on the
performance of the mixed-ADCs architecture,

whereas the channel estimation problem has not been
tackled sufficiently yet. In this paper, we propose a
compressed sensing algorithm named Approximate
Conjugate Gradient Pursuit (ACGP), designed to
reduce complexity while maintaining robust
performance. Unlike traditional algorithms such as
Orthogonal Matching Pursuit (OMP) and Least
Squares (LS), ACGP leverages approximated
conjugate and gradient directions, which enhances its
efficiency in estimating sparse mmWave channels
under mixed-ADC architectures. This facilitates for
improved channel estimation, particularly in low-SNR

environments,  while significantly ~ reducing
computational overhead compared to existing
methods.  The  algorithm's  performance  is

benchmarked against OMP [1] and LS to highlight its
advantages.

The main contributions of
summarized as follows:

this paper are
e Proposal of ACGP Algorithm: Introduces a novel
compressed  sensing  algorithm,  Approximate
Conjugate Gradient Pursuit (ACGP), for channel
estimation in mmWave massive MIMO systems with

mixed-ADC architectures.
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e Enhanced Estimation Efficiency: Leverages
approximated conjugate and gradient directions to
achieve  accurate sparse channel estimation,
particularly under challenging low-SNR conditions,
with reduced computational complexity.

e Extensive Performance Analysis: Evaluates ACGP
under various system parameters, such as SNR levels,
RF chains, ADC resolutions, and observation frames,
demonstrating its robustness across diverse scenarios.
e Superior to Baseline Methods: Benchmarks ACGP
against traditional algorithms like OMP and LS,
showing significantly improved MMSE performance
and reduced computational overhead.

e Mixed-ADC Architecture Benefits: Highlights the
effectiveness of mixed-ADC architectures over low-
resolution ADC-only systems, offering improved
channel estimation accuracy while preserving energy
efficiency.

/LSQ)

The rest of the paper is organized as follows.
Section 2 illustrates the proposed architecture of the
Massive MIMO system. Section 3 delves through the
steps of the proposed algorithm. Section 4 provides
the numerical and simulation analysis of the proposed
system and algorithm. Finally, the research is
concluded in section 5.

2. System Model

A mmWave Massive MIMO communication
system is considered, provided with a hybrid
beamforming architecture and mixed-ADCs similar to
the system shown in Fig.1. The number of antennas
utilized for the BS and MS are Ng; and Ny,
respectively. L denotes the number of RF chains used
at both ends. The data streams’ number is denoted by
N and it is assumed to be equal to L.
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Figure (1): Single user Massive MIMO with mixed-ADCs architecture

The BS is provided with L X N; baseband
precoder Fgp and is succeeded by N, X L RF

precoder Frg. The signal at the mt" time after the
precoder can be written as [1]:

Xm = F Sm

e

Where F = FRF FBB , and S the
transmitted symbols at the m™ time. For the purpose
should de be

implemented such that E [ssf] = (NLS)I Ng- The

denotes

of normalization, the vector S

received vector at the M time can be written in the
form [1]:

VPHF, s,, +n,, ey
Where the mmWave channel is H with Ny;,- X N,
dimensions, and n,, ~ N(0,0? Iy,,,) denotes the

rn =

additive white Gaussian noise. P is the transmission
power The combiner Wy, at the MS is found by the
product of the RF and BS combiners Wgg and Wpgpg
to have the below received signal [1]:

Ym =VPWi HFy sy + Wiin, .. ()

298

A mixed-ADCs system architecture is considered at
the MS side. The MS is equipped with high- and low-
resolution ADCs where the majority of the antennas
are connected to low resolution ADCs whereas the
minority are connected to high resolution ADCs. It is
supposed that Vy = L Ny, represents the number of
antennas which are connected to the high-resolution
ADCs and V; = (1 — L) Ny, tepresents the number
of antennas connected to the low-resolution ADCs,
resembling the majority of antennas. £ can be taken as
a percentage of the total number of antennas. The
overall received vector Y can be written as [1]:

Y Yol_ [ Yo
B Vl]_ [Q(Y1)
= [yl ...yl 0V + 1)), ..., 0(¥[ViD]”

It is assumed that the high-resolution ADCs has
negligible quantization noise as such low-resolution
ADCs quantization noise contribution are taken into
account only. The mmWave channel is modeled as
geometric and a limited number of K scatterers is
assumed, where each scatterer is proposed to
contribute to a single propagation path between the BS
and the MS. Hence, the u‘" tap channel H,, can be
determined as [23]:
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K
NyN
H. = \/@z ap ays(O) aps" (p) - 4
k=1

Where the average path-loss is denoted by p. And
the complex gain of the k™ path is referred to as @y,
it is assumed to have a Rayleigh distribution, i.c.,
~XN(0,Pg), k = 1,2, .., K with the average power
gain Pg. ), and ¢ represent the azimuth angles of
arrival and departure, respectively. They are assumed
to be uniformly distributed between 0 and 2. Lastly,
ays(0) and agg(¢y) are the array response vectors
at the BS and MS, respectively. The array response
vector at the MS can be formulated as [23]:

L[ q,e/Gesmon,

T .. (5)

ays(6r) =
" . edturn(E)asin@,)

Where A refers to the wavelength, and d denotes
the antenna elements spacing. The array response
vector at the BS can be determined in the same manner
as in eq. (5). In this paper, it is assumed that any prior
knowledge of the channel is not available. The channel
can be reformulated as [1], [24]:

H, = Ag diag(a) A} .. (6)
Where
NMTNBt
a= T [al,az, .....,(ZK]

Ar = [ar(¢y1),ar(y), ..., ar(Pg)]
Ag = [ag(01),aR(63), ..., ar(Ok)]

Combining all the narrowband channels of all
clusters leads to the wideband channel model that can

be simplified as [8]:
N¢
H= Z H,
u=1

Where N, refers to the number of clusters.

(D

The received matrix (¥,,) before quantization is
formulated as [1], [25]:

Ym = VP WE HF, s, + Win,

= VP(SLEL @ Wy ) vec(H)+ Ny, ®

Where N, = W n,,. As derived in [1], [25], the
overall received signal consisting of all M frames can
be written in the form [1], [25]:

Y=VPWz+ N

Y=VPpArz+ N - 0)

Where y are the obtainable observations, W is the
sensing matrix (¥ = ¢ Ap), and ¢,, is the
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/Lgﬁ)

" time frame (P,

measurement matrix of the mt
ST EY ®W¥ ). Ap is a dictionary matrix or sparse
basis matrix whose elements can be determined by
utilizing all the AOA/AOD’s possible values [1], [25].
The paths’ gains of the quantized directions is denoted
by the vector z. The mmWave Massive MIMO
channel is very sparse due to the lack of line-of-sight
components. The sensing matrix W is used to predict
the sequence Z. Then, by utilizing the basis matrix Ap,
we can recover the channel matrix.

3. Approximate Conjugate Gradient

Pursuit Algorithm (ACGP)

To contextualize the performance of the proposed
Approximate Conjugate Gradient Pursuit (ACGP)
algorithm, it is essential to compare it with established
baseline methods such as Orthogonal Matching
Pursuit (OMP) and Least Squares (LS) algorithms [1].
These algorithms represent standard approaches in
compressive sensing and channel estimation, each with
its unique strengths and limitations.

OMP algorithm is a traditional greedy algorithm
widely used in compressive sensing for signal
reconstruction. It iteratively selects the atom with the
highest correlation to the current residual, leveraging
the signal's sparsity. By orthogonalizing the selected
atoms during execution, OMP minimizes the required
number of measurements and iterations, making it
computationally efficient.

LS algorithm, on the other hand, relies on
straightforward mathematical operations such as
matrix inversion and multiplication. This simplicity
makes LS easy to implement with fewer parameters.
However, LS does not account for the effects of noise,

leading to inaccuracies in channel estimation,
particularly in low signal-to-noise ratio (SNR)
conditions.

In this paper, we propose using a different
implementation of Orthogonal Matching Pursuits
(OMP). The computational complexity of OMP
comes from using the pseudo-inverse operation in
each iteration of the algorithm to calculate the
recovered vector Z. This operation is time consuming
and requires excessive memory, hence, efficient
implementation should be developed. The first
efficient implementation is using QR factorization
while the second one, which is considered in this
paper, is using directional updates. The latter one has
similar computational complexity to the QR
factorization but if offers: better stability, less storage
requirements, and a smaller number of multiplications.
However, while the directional updates provide
computational efficiency, the approximations involved
in this approach may lead to performance deficiencies
in certain scenarios. For example, in cases where the
sensing matrix columns exhibit high correlation, the
index selection process may be less reliable, affecting
the quality of the reconstruction. Additionally, when
the number of iterations is limited, the algorithm may
not fully converge, leading to suboptimal channel
estimation.

The algorithm starts by firstly defining W sensing
matrix, which maps the high-dimensional sparse signal
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to a lower-dimensional observed signal while
preserving sufficient information for reconstruction. It
also defines the observation vector y, the length of the
recovered vector Z, and the number of iterations
maxi. Then, the algorithm initializes the residual
vector °, which represents the difference between the
observed signal and the reconstructed signal, the
recovered vector z°, and the indexing variable I'°. The
algorithm, then, finds the correlation between the
Hermitian of sensing matrix WH and the residual ¥ 1.
Next, the algorithm searches for the index referring to
the maximum correlation, performs the union of the
previous indexing symbol I™™%, and assigns this value
to I'™. After that, the direction d?n is updated for all
n, (except when n=1, the first direction d}q =1) by
combining the previous update direction (b; djn")
and the current gradient direction (gpn), which
indicates the direction of the steepest descent in the
error space. This direction helps adjust the
reconstructed signal in each iteration by refining the
estimate toward a more accurate solution. The optimal
step-size a™ is, then, calculated and multiplied by the
new direction to find the updated values of the vector
z". The algorithm runs through the steps until the
maximum number of iterations is reached. Finally, the
vector Z is utilized to estimate the channel matrix H in
a vectorized form h. The algorithm is summarized in
Algorithm 1.

Following the algorithm steps, the computational
complexity of the proposed ACGP algorithm can be
upper bounded by O(K;NyMy), where K is the
sparsity level, Ny is the number of columns in the
sensing matrix, and My is the number of rows. In
comparison, the LS algorithm has a complexity of
O(Ng)+0( MygN), while the OMP algorithm exhibits
a complexity of O(K2) + O( MyK2)+ O(K; NyMy).
These results highlight that the ACGP algorithm
incurs significantly lower computational overhead,
particularly in terms of the number of operations
required, making it more efficient than both LS and
OMP in practical implementations.

Algorithm 1: Approximate Conjugate Gradient
Pursuit algorithm (ACGP)

Input: The sensing matrix is W, observations vector y,
the length of the approximated vector z, and the
number of iterations (maxi)
1. Initialize: 7 =y,2° =0,T° = ¢
forn=1; n:= n+ 1 tll maxi
gn = WPHn-1
r*= r*' u {arg; maxlg;l}
ifn=1
- d}q =1
6. ifn #1
- by= =" Wngpn/ (" Y
Where ¢ = Wrn din
- dln= gm— b di?t
at = rn*cn/ (Cn* cn)
M=z = zpn + atdp
rn — rn—l _ an CTL
0. end for

APl A

=Y 0N

/Lgﬁ)

1. z=z"
12. h = AD Z
13. Output: h

4. Numerical Results

In this section, we compare the performance of the
proposed algorithm with OMP and LS algorithms
presented in [1] in terms of the achieved Minimum
Mean Squared Error (MMSE). The system parameters
are as follows: Lgy = Ny = Ly =4, Ny, = 16,
N; =4, N, = 32, K = 2 (number of paths in each
cluster), N = 16 symbols per frame, M = 80 number
of obsetrvations ot frames, L = 0.2. We will refer to
any change of parameters as proceeded in this section.

Fig.2 depicts the performance comparison of the
proposed algorithm (ACGP) with OMP for different
radio frequency (RF) chains in terms of (MMSE)
across varying Signal-to-Noise Ratios (SNR). The
results show how the algorithms behave under
different noise conditions. Each line represents a
specific algorithm and RF combination: OMP with
RF=1 (green triangles), ACGP with RF=1 (purple
triangles), OMP with RF=2 (blue circles), ACGP with
RF=2 (yellow circles), OMP with RF=4 (black dashed
line with triangles), and ACGP with RF=4 (pink
diamonds). As SNR increases, MMSE decreases for all
algorithms, indicating improved estimation accuracy.
Notably, ACGP with higher RFs (RF=4, RF=2)
consistently achieves lower MMSE compared to
OMP, especially at lower SNRs, depicting its
robustness and superior performance in noisy
environments.

A performance comparison is presented in terms
of MMSE as a function of SNR for different ADC
resolutions is illustrated in Fig.3. The algorithms
compared are LS, OMP, and ACGP, cach evaluated
with 1-bit, 2-bit, 3-bit, and 4-bit ADCs. The plot
indicates that, across all ADC resolutions, MMSE
decreases as SNR increases, highlighting improved
estimation accuracy at higher SNR levels. As it can be
observed, ACGP consistently outperforms both OMP
and LS across different ADC resolutions. The MMSE
values for higher-resolution ADCs (4-bit) are
significantly lower compared to those for 1-bit ADCs,
depicting the advantage of higher ADC resolution in
reducing estimation error. The results underscore the
robustness of ACGP, especially with increased ADC
resolution, in achieving lower MMSE, thus providing
more accurate signal reconstruction under various
noise conditions.

Fig.4 shows a comparing between mixed-ADCs
architecture and low resolutions only architecture.
The total number of high-resolution ADCs is assumed
to be 13 since the percentage is £ = 0.2. It can be
observed that the impact of the proposed architecture
is considerable. All algorithms show an enhancement
in performance with the mixed resolution architecture.
ACGP marks a better performance than OMP and LS,
achieving lower MMSE for the whole SNR ranging
from -10 to 10.

The impact of ADC resolution (in bits) on the
performance of OMP and ACGP algorithms is
demonstrated in Fig.5. The results indicate that for
both algorithms, increasing the number of bits results
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in a significant reduction in MMSE, especially when
changing from 1-bit to 4-bit ADCs. At 0 dB SNR,
ACGP consistently outperforms OMP, achieving
lower MMSE across all bit resolutions. Similarly, at 10
dB SNR, both algorithms exhibit improved
performance with increased ADC resolution, but
ACGP again demonstrates superior —accutracy
compared to OMP until the resolution becomes 3 bits.
The curves show negligible returns beyond 4 bits,
where the reduction in MMSE becomes less
promising. This indicates that while higher bit
resolutions enhance performance, the most gains in
essence are achieved within the 1-bit to 4-bit range,
particularly for ACGP under both SNR conditions.

N\ - -
—A—OMP, RF=I
148 \\ —>— ACGP, RF=1
125N\ —#—OMP, RF=2
2N\ % ACGP, RF=2
10 - A--OMP,
—0— ACGP,

MMSE [dB]
N

Y% 15 10 i 0 s 10 15
SNR [dB]
Figure (2): The MMSE of the proposed algorithm as
compared with OMP for different RF chains

LS, 1-hitADC

He LS, tADC
| =4~ OMP, 3-bit ADC
20§ —0—ACGP. 3-bit ADC
- ©-'LS.  4-bit ADC
=@=-OMP, d-hit ADC
—e— ACGP. 4-bit ADC

SNR [dB]

Figure (3): The algorithms achievable MMSE for
different ADC resolutions

1S, 0.2 High bits ADC
—=#— OMP, 0.2 High bits ADC

ACGP, 0.2 High bits ADC
sanlpen ]S, Low bits ADC Only
- &A-:OMP, Low bits ADC Only
—&— ACGP, Low bits ADC Only

L S e T a

-10 s 0 5 10
SNR [dB]

Figure (4): Performance comparison between

mixed-ADCs and low resolutions ADCs only
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~#&—OMP, 0dBSNR
—P— ACGP, 0dB SNR
—+—OMP, 10dB SNR

ACGP, 10 dB SNR

MMSE [dB]

-20

1 2 3 4 o

Number of bits

Figure (5): Performance comparison of the mixed-
ADC:s for different number of low resolutions ADCs

bits

0.8

[s]

0.6

me

T

04r

10 20 30 40 50 60 70 80 90 100
The number of frames (M)

Figure (6): Computation time compatrison for
different number of frames (M)

Finally, Fig.6 shows a comparison in computation
time of ACGP and OMP for different numbers of
frames (M). It is clearly noticed that although OMP
seems to be more efficient in processing, as for
different number of observation frames (M), ACGP
depicts a stable and almost constant difference in time.
Despite OMP's faster computation times, ACGP
offers significant advantages in terms of accuracy and
robustness, particularly in noisy environments.

5. Conclusion

In this paper, the channel estimation problem for
mmWave Massive MIMO with mixed-ADCs is
studied. A compressed-sensing based algorithm is
proposed and its performance is evaluated. Simulation
results showed that mixed-ADC architectures
significantly outperform low-resolution systems, with
ACGP yielding lower Minimum Mean Squared Error
(MMSE) than Orthogonal Matching Pursuit (OMP)
and Least Squares (LS), particularly under low SNR
conditions, achieving an average performance
improvement of 30% to 50% at moderate SNR levels.
The improved channel estimation accuracy provided
by ACGP has broader implications for mmWave
Massive MIMO systems. By delivering more reliable
channel estimates, ACGP enables more effective
beamforming and resource allocation, which are
critical for enhancing overall system capacity, spectral
efficiency, and energy efficiency. Although ACGP
incurred a slight increase in computation time, it is
considered less complex computation- and storage-
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wise. It is also consistent accuracy and robustness
make it efficient in massive MIMO systems. Future
work could focus on further optimizations of ACGP
to reduce computation time while preserving its high

performance.

One potential approach involves

leveraging parallel processing techniques to expedite
computations, particularly for large-scale systems.
Incorporating machine learning techniques, such as
deep neural networks, could also enhance the
initialization phase or guide the selection of gradient
directions, thereby improving both accuracy and
efficiency.
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