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1. Introduction

Abstract

Power outages are a common and persistent problem in Iraq, significantly
impacting various aspects of life and business. These interruptions distupt routine
household tasks and hinder more complex technical operations in industries and
services. Emphasizing the need for careful management and proactive solutions.
This paper introduces a real-world time series dataset for Baghdad city, including
historical outages, weather conditions (such as temperature), and power overloads,
and analyzes the correlation among these parameters in different seasons. The
research uses this dataset to train one-dimensional Convolutional Neural
Networks (1D CNN) to find patterns and relationships that can accurately predict
when power outages can happen in the long term and short term to improve the
management of the Baghdad electricity grid through data-driven networks. This
model was evaluated using performance metrics, and the results show that CNN
is accurate in predicting outages in the short term with a Mean Absolute Error
(MAE) of (0.0077), whereas, in the long term, it has achieved an MAE of (0.0775).
These predictive models have the potential to facilitate the development of
proactive measures aimed at reducing the impact of power outages by anticipating
potential outages in advance. This research focuses on enhancing the reliability
and efficiency of Baghdad's electricity supply, ultimately contributing to economic
growth and stability.

Keywords: CNN, Electricity Outage, Deep Learning, Baghdad City.
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institutions and businesses, including hospitals, phone

A power outage is a catastrophe in any nation since
it impedes local social and economic activity.
Additionally, it has an impact on a variety of industries
and has the potential to seriously harm several

companies, and industrial installation.

A power outage occurs when there is a partial or
whole loss of the network's electric power supply,
which impacts end users. Three primary categories can
be applied to categorize the causes of power outages:
natural events, human errors, and hardware and

NJES is an open access Journal with ISSN 2521-9154 and eISSN 2521-9162
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

212


http://doi.org/10.29194/NJES.28020212
http://creativecommons.org/licenses/by-nc/4.0/
mailto:alhuwadi.saja@gmail.com
mailto:shaymaa.alshammari@gmail.com

NJES 28(2)212-223, 2025
Jawad & Al-Shammari

technical malfunctions. FElectrical utility companies
must utilize an Outage Management System (OMS) to
recognize the location of a power failure [1].
Numerous environmental elements, including the
weather, trees, and animal activity, can cause outages.
The capability to precisely forecast these failures is a
critical step in improving the reliability of power
distribution networks, as they account for an
important portion of outages. An electric power
distribution system's dependability is a measure of its
capacity to provide uninterrupted electricity to its
consumers [2]. Iraq faces a major challenge from its
frequent power outages caused by temperature
variations, inadequate energy production, and the
widespread use of consumer appliances|3]. The main
problem in our research is the electricity outages in
Baghdad, which lead to many disturbances, this can be
achieved by creating a predictive model by utilizing
past data on temperature fluctuations, energy supply
shortages, and the rising use of electrical devices to
mitigate the negative effects on locals and the
economy, this model will help identify patterns and
possible future outages, enabling better resource
allocation and infrastructure planning.

Deep learning is a subset of Artificial Intelligence (AI)
and Machine Learning (ML) that works with multilayer
neural networks, also known as deep neural networks,
to mimic how the human brain processes information
and creates programs to decide. Deep learning
algorithms are particularly useful for applications such
as natural language processing autonomous systems,
language recognition, image classification, etc.,
because they are able to extract features from raw data
and learn from large amounts of dataset [4].

In this paper, the dataset is time series data, so deep
learning methods like one-dimensional Convolution
Neural Networks can identify the patterns in
sequential data. The categorization of predicted power
outages is based on these times.

Predicting events or circumstances for a short time
frame, like hours or weeks, is identified as short-term
forecasting. Predicting short-term power outages is
crucial to enhancing grid stability and reducing the
effect of disruptions on customers.

The main applications of short-term power
forecasting:

e Grid Management:

Outage prediction models are used by grid
operators to oversee and improve grid operations in
real-time. This facilitates decision-making on the
effective rerouting of power or the deployment of
repair crews.

e Maintenance on Preventive:

Predicting breakdowns minimizes downtime and
maintenance costs by enabling the scheduling of
preventative maintenance before problems become
serious enough to cause failures.

e Systems for Notifying Customers:

Some utilities use predictive models to notify
consumers about impending outages so they can make
necessary preparations (e.g., charging batteries,
stockpiling supplies, etc.).
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e Forecasting and balancing of loads:

Outage prediction can aid in load balancing and
forecasting by identifying locations that may encounter
disruptions, facilitating better load distribution.

Predicting conditions or events over a long time,
often months or years, is known as long-term
forecasting. This kind of forecasting is essential for
long-term decision-making and strategic planning [5].
The applications of long-term forecasting includes.

e Planning and Investing in Infrastructure:

Companies use long-term forecasts to direct grid
infrastructure investments, including modernizing
distribution networks, substations, and transmission
lines. Resources can be distributed more effectively by
forecasting regions more likely to have future
disruptions.

e Planning for the Community and Economy:

Local governments and communities use long-
term outage forecasts for economic development and
urban planning. To increase resilience and provide
consistent electricity for vital infrastructure, regions at
higher risk of outages can concentrate on developing
microgrids or other localized alternatives.

e Road Mapping for Innovation and
Technology:
Long-term  projections drive research and

development of new technologies to enhance grid
resilience. These could include advancements in smart
grid technology, sophisticated infrastructure materials,
or novel algorithms for outage management and
predictive maintenance.

e Management of the Supply Chain:

Long-term forecasts are used by businesses whose
operations and output depend on a steady supply of
electricity to manage supply chain risks. Planning for
backup power options, modifying production
schedules, or even moving operations to locations
with more dependable power sources are all made
easier with an understanding of probable future
outages.

The contributions of this research are that the
dataset used in this study is novel and has not been
utilized before. This ensures the originality and
uniqueness of the analysis conducted. Principal factors
were analyzed to discover their impact on one another,
thereby enhancing performance and operational
efficiency.

The goal of this paper is to design a deep learning
model to predict electricity outages in Baghdad for
both short and long terms based on 1DCNN to
discover its efficiency in dealing with time series data.

This paper is arranged as follows: Section Two
offerings the literature review, Section Three shows
the proposed deep learning method used in this
research, Section Four describes the research
methodology, Section Five displays the results
obtained in this research, the main conclusions and
recommendations for future work are introduced in
section six.

2. Literature Review
Many studies have been conducted in this field.
Amarasinghe et al. (2022) [6] explored the use of
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Convolutional ~ Neural Networks (CNN) for
forecasting the energy load of individual buildings,
convolutions on previous loads are used to apply the
methodology to a benchmark dataset of residential
customer electricity consumption. The result showed
that CNN outperformed deep learning Artificial
Neural Network (ANN) and Support Vector Machine
(SVM) techniques. Wu et al. (2020) [7] introduced a
hybrid neural network model that combines CNN and
a Gated Recurrent Unit (GRU) called GRU-CNN.
The model allowed for more data utilization and short-
term load forecasting because it had the minimum
Root Mean Square Error (RMSE) and Mean Absolute
Percentage  Error  (MAPE) among  CNN,
Backpropagation Neural Network (BPNN), and GRU
forecasting methods, as demonstrated by testing it in a
real-world experiment. GOH et al. (2021) [8] described
a hybrid neural network that combineed elements of
Long Short Term Memory Networks (LSTM) and 1D-
CNN. The CNN-LSTM network (MCNN-LSTM)
was used to extract calendar, weather, and load
features by using multiple heads. For processes with
one step and twenty-four steps, the model improved
load prediction by 16.73% and 20.33%, respectively.
FARSI et al. (2021) [9] proposed a method predicting
daily electric power consumption in Malaysia and
Germany by using the Parallel LSTM-CNN Network
(PLCNet) model, which performed better in terms of
accuracy than other machine learning models
((AutoRegressive  Integrated Moving Average)
ARIMA, SVR, LSTM, etc.).Parallel LSTM-CNN
achieved a lower RMSE=0.061 for the German dataset
and a lower RMSE=0. 031 for the Malaysian dataset
compared to other models used. DENG et al. (2019)
[10] suggested a novel multi-scale CNN model with
time cognition (TCMS-CNN). In addition to
extracting various level features, the model used a
novel time-coding technique known as periodic
coding. The TCMS-CNN exceeded recursive multi-
step LSTM by 34.73%, 14.22%, and 19.05% on MAPE
for 48-step point load forecasting. The TCMS-CNN
showed potential for real-world applications. Saidi et
al. (2021) [11] presented research that analyzed
lightning events using three-month datasets from May,
October, and November 2019. Data was pre-
processed using machine learning, removing
unnecessary features and sorting based on sequenc
correlations between polarity amplitude and lightning
data were explored. The study used Logistic
Regression(LR), and Decision Tree(DT) for power
outage classification, achieving 100% accuracy. The
Fine Tree model had the highest Area Under the
Curve (AUC) value of 0.79. Mubarok and Sapanta
(2018) [12] used ANN with backpropagation to
minimize blackouts. The Levenberg-Marquardt
training algorithm, Quasi-Newton, and Gradient
Descent Variable Learning Rate were used. The results
were seen with the average error percentage rates,
resulting in errors of 0.194%, 0.15%, and 0.14%.Al-
Nasiri et al. (2022)[13] proposed an ANN for load
forecasting. Load and weather data were used for a
single year in Mosul. An ANN was employed to
forecast the load using the MATLAB R17a software
program. The model's petformance was evaluated with
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an accuracy of MAPE equal to 0.0402. AlHaddad et al.
(2023) [14] introduced predicting outages caused by
line vulnerabilities or grid disruptions; the researchers
developed a machine learning-based method for
outage prediction for smart grids. The study evaluated
five machine learning algorithms, including ANN,
(SVM), (DT), (LR), and Naive Bayes (NB), using the
bagging ensemble method. The results showed a
precision rate of 99.98%, enabling sustainable energy
integration into power networks and facilitating energy
manufacturing. The research contributed to energy
management systems by predicting grid vulnerabilities
and laying the basis for improving resilient and
dependable power infrastructure. Abumohsen et al.
(2023) [15] proposed a study aimed at developing
forecasting models for electrical load estimation based
on current measurements of electricity companies.
The models used deep learning algorithms such as
Recurrent Neural Networks (RNN), GRU, and LSTM.
The GRU accomplished the optimal precision and
lower error performance compared to other models,
with an MSE of 0.00215, MAE of 0.03266, and R-
squared of 0.90228. Ribeiro et al.(2022)[16] compared
the performance of three deep learning models (RNN,
LSTM, GRU), three machine learning models
(Support Vector Regression (SVR), Random Forest,
and Extreme Gradient Boosting (XGBoost)), and a
classical time series model, ARIMA, in predicting daily
energy consumption. The dataset, which included
8040 entries from an Irish logistics facility, was
evaluated using grid search techniques. The XGBoost
models outperformed the others for very short-term
load forecasting and short-term load forecasting,
whereas the ARIMA model underperformed.Wu and
Wu (2024) [17] proposed a combined CNN, BiLSTM,
and Self-Attention SA mechanisms(CNN-
BiLSTMSA) model to predict residential electricity
consumption in Paris, France. Experimental results
show it outperformed existing methods like(SVM,
GRU, CNN-LSTM, and linear regression(LR).
Koukaras et al.(2024)[18] improved that The
resampled  one-hour, one-step-ahead  forecast
outperformed the other models for short-term load
forecasting by using many machine learning models
such as Histogram Gradient-Boosting Regression
(HGBR), Light Gradient-Boosting  Machine
Regression (LGBMR), Extra Trees Regression (ETR),
Ridge Regression (RR), Bayesian Ridge Regtession
(BRR), and Categorical Boosting Regression (CBR)
based on data resolution and time step forward. Oqaibi
and Bedi(2024) [19] introduced a hybrid technique by
combining data smoothing and decomposition
strategies with deep neural networks. It employs an
attention strategy to acquire long-term dependencies
between load demand measurements. A comparative
analysis of a real-world dataset from five southern
Indian states validates the method's efficiency.

Table 1 below compares the literature review in terms
of the techniques used, advantages and disadvantages,
and the main results.

Previous studies have shown that electrical loads
can be forecast globally and in wvarious Iragi
governorates, but no studies have predicted outages in
Baghdad. As a result, our study employs specialized
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data for Baghdad that has been studied to determine
its significance and is used to forecast outages in
Baghdad in the long and short term.

Tabel (1): Comparison of the literature review

/\%9)

Ref. | Used technique Advantage Drawbacks Main Results
Compared different methods to The research did not consider the impact
[6] |CNN, SVM, ANN MpAre . . of weather data on load forecasting RMSE=0.732
predict a single residential customer accuracy
Real-world experimentations of ilrzlttcel;s jﬁ;ﬁ?ﬁftﬁ?;jﬁﬁ?ﬂiﬁ;i
[7] GRU-CNN Wuwei region electrical load crp - o MAPE=2.8839
forecasting handling varying data characteristics or
external factors.
Produced appropriate results for The Prop-o-sed models‘ sc.alablhty and Maine d_atasct
. . generalizability may be limited due to the MAPE=2.93
[8] CNN-LSTM both multi-step and single-step . . . .
load prediction lack of in-depth discussion of its Ireland dataset
oad predictio application across real-wotld applications. MAPE=2.01
Malaysian
] Parallel LSTM- Introduced a novel technique The data, such as weather data, was not RMSE=0.031
CNN d taken into consideration German
RMSE=0.061
[10] TCMS-CNN Introduced a novel technique Didn’t consider weather effects MAPE=0.98%
;= 0,
[11] LR,DT Studied lightning events affects Limited dataset Accurgc; 100%
Classify outage
The ANN technique, which
employs the Levenberg-Marquardt, . -
Gradient Descent Variable dﬁgiﬁ?;f;ﬁigji‘;irﬁgg ;:ror;lcljl:rjv average error
[12] ANN 1;1:a(r)trlil?hgm}zate;;gjcglura;;iijﬁ): when working with huge datasets and ) =0.322619%.
acgcuracv ir; }ljoad forecasting with several parameters.
error rates as low as 0.14%.
The study's reproducibility and
. transparency may be compromised
[13] ANN Studied thi Cf&.:Ct? 10 £ \Cxlzeather % Ibecause of the lack of detailed knowledge MAPE=0.0402
clectricat foa of the data collection and preprocessing
methodology.
. ANN didn’t introduce good accuracy. It LR
(14 | (SYM), (ANN), | Studied the effects of weatheron |- .\ slaced by LSTM, GRU RNN, MAE=0.00025
(LK), O, NB) the power grid CNN RMSE=0.016100
. Changing the learning rate and optimizer | MSE = 0.00215, MAE
[15] (LSTEID’ (GI\I]‘U% Gave aecarate ffs“l“ in the was done manually, which could be ~0.03266 RMSE =
and (RNN). prediction achieved using an optimization method 0.04647.
(SVR), Random ) .
[16] Forest, (XGBoost),| Compared deep learning, machine r;hf;;?i}e ic;cuss:fs (l)rflosrhl((;:_fzrrnr;xzzih ! RMSE=0.0844
RNN, LSTM learning, and classical ARTMA y u p;mmg 8 &y MAE=0.0461
ARIMA ’
Proposed a CNN-BiLSTM-SA Did not consider Factors like holidays RMSE=0.1554
[17] | CNN-BiLSTM-SA | model for predicting household affect the electric device consumption MAFE=0 2 280
electricity consumption and lead to more accurate results e
(HGBR), Studied the effect of energy and hlliﬂr}rlleitszldy dlf no;c Z);telncsllrvel{)dlicusz :E ¢
(LGBMR), (ETR), |  weather parameters on power SHOMS OF potentisy Grmwoackr o T RMSE=0.158
[18] . . . machine learning models analyzed, which g
(RR), (BRR), consumption by using different . C MAE=0.092
CBR Machine learnine method could provide a more balanced view of
( ) achine fearning methods the effectiveness of these techniques.
Pr(iﬁo;ed in}glr);ld Andhra Pradesh
e RMES=2.854
ata Smoothilis Collected and analyzed the real- . Karnataka
and decomposition . . . used an energy dataset and did not _
[19] strategy with time electricity consumption analyze the effect of other factors like RMES=4.230
(GRU, ISTM, and dataset of five southern states in ’ cather Kerala
BI éliU for India for seven years W RMES=2.486
. )1 © Tamil Nadu
proving RMES=6.875

forecasting results

3. Deep Learning Method

A specific kind of convolutional neural network
called a 1D CNN is made for analyzing data that has
only one dimension. 1D CNNs are particularly good
at extracting features from sequences, such as time
series data, in contrast to traditional CNNs that are

used for images (2Dimension) or video (3Dimension)
data. The convolutional layer extracts features and
finds patterns in the input data by operating filters
(learned weights) that move along the data. These
filters (e.g., a filter size of 3) look at three subsequent
data points at a time; they are smaller than the input
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sequence. This layer outputis a feature map that shows
where those features are present in the data at different
points [20].

Max Pooling: The max pooling layer takes the
maximum value within the feature map as it moves
across a given window (pool size). In doing so, the
data's spatial dimension (length) is decreased while the
main characteristics are preserved.[21]

Flattening Layer: In a 1D CNN architecture, the
flattening layer acts as a link between the
convolutional/pooling layers and the fully connected
layers. Convolutional and pooling layers frequently
yield multi-dimensional outputs (feature maps), but
fully connected layers requite a one-dimensional
vector as input. In essence, flattening transforms the
data into a single, long vector from its multi-
dimensional form (width x height, for example, in a
2D feature map). All the features that were extracted
from the earlier layers are included in this vector in a
format that can be fed into the fully connected layers.
After this vector has been flattened, the fully
connected layers use the learned features for further
calculations and making forecasts [22]. Fig. 1 shows
the main layers of the IDCNN.

4. Methodology
This section shows the methodology designed for
the proposed research. Fig. 2 shows the main steps
used to manage the deep learning process.
LD Conv layers

Time

=

Features

Max pooling  Flattening

a—

=

(]
4.1 Data Collection

The power data, including load and outage for
both the short-term and long-term, were collected
from the Al-Rusafa Electricity Distribution-Control
and Communications Department for Baghdad.
Temperature data was taken from the National
Aeronautics and Space Administration (NASA)
estimation of global energy resources dataset. The
dataset, including the weather information provided by
the website [24], was arranged by date to predict short-
term and long-term outages. The short-term
prediction of Baghdad city was taken as a case study,
where the loads data of Baghdad city measured in
megawatts per hour were entered in addition to the
temperature measured in Celsius and outages in hours,
where the readings included 24 readings per day for a
full year (2023), so the total number of readings
became 8760 records that were included in the Excel
sheet. As for predicting long-term outages, the 132-
kilo Volt (KV) stations in Baghdad were taken into
consideration, as daily data was entered as total loads
of the Al-Waziriya and Al-Ghazali groups, each of
them consisting of (15) 132 KV stations. In addition
to temperature data in Baghdad measured in Celsius,
the outage was measured by the number of hours, and
the data were entered for five years from 2019 to 2023.
The data constituted 1826 records that were included
in the Excel sheet.
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Figure (1): IDCNNJ23]
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Figure (2): Methodology

4.2 Data Pre-processing

This section presents the data preprocessing,
which involves both imputation and normalization.
The electrical load data and outage hours were
obtained as paper records, manually entered, and
organized by date in an Excel file. The temperature
data was obtained as a CSV file, then converted to an
Excel file and arranged according to the same dates as
in the first file to ensure data consistency during
analysis.
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4.2.1 Imputation

Imputation in time series data refers to the
procedure of completing missing values to preserve
the temporal sequence's continuity.
Two frequently used data imputation approaches,
namely Last Observation Carried Forward(LOCF)
and Next Observation Carried Backward (NOCB), are
missing data filling. LOCF imputation method
replaces the unfilled cells with the last observation
before them, while the NOCB with the next available
value [25].
4.2.2 Normalization

In deep learning, normalization is an essential pre-
processing step that entails scaling data features
(columns) to a specified range before training the
model. Using the min-max scaling technique, the
features are scaled to a range of 0 to 1, as accomplished
by using eq. (1). which prevents features with bigger

scales from overcoming other features [15].
§ X — xmin
x e ——————————————

Xmax ~ Xmin

(D
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4.3 Models Training

Training the one-dimensional CNN was done
using the Keras library, a high-level neural network
API written in Python for building and training deep
learning models because Keras has the necessaty
functions for processing sequential data. The training
process began with a batch size (10), meaning the
model updates its internal weights after processing
every 10 samples. The model's architecture includes
two 1D Convolution layers. The first 1D Conv layer
employs 100 filters with a kernel size of 2 and uses the
tanh activation function, which introduces non-
linearity by outputting values between -1 and 1. The
second 1DConv layer has 64 filters and a kernel size of
2, but it uses the Rel.U activation function, which
outputs the input directly if positive and zero
otherwise. Following the convolutional layers is a 1D
MaxPooling layer with a pool size (2), which
downsamples the input by taking the maximum value
over a window of (2). This layer reduces the
dimensionality and helps to prevent overfitting. After
the convolutional and pooling layers, the model
includes a flattened layer, which exchanges the multi-
dimensional production from the previous layers into
a single dimension. This flattened data is then fed into
two Dense layers. The first Dense layer has 100 units
and uses the tanh activation function to learn complex
representations by connecting every input with every
output. The second Dense layer is the output layer,
which provides the expected results. The model is
compiled using the Adam optimizer, used for its
efficiency, and learning rate (0.001). The training was
continued for 100 epochs, during which the entire
dataset was processed through the neural network 100
times. Adjusting these hyperparameters, like the
number of filters, kernel size, activation functions,
pool size, and optimizer, can significantly impact the
model performance and its capability to generalize to
new data. The same procedure is repeated for long
terms. In this case, the batch size was considered 5
instead of 10, the number of filters is 64,32 in two
1DCNN, and the number of epochs is 300.

5. Results

This section introduces two subsections. The first
one is the collected data analysis according to different
seasons to study the effect of key factors considered in
this paper on each other, and the second subsection
shows the main results obtained by using IDCNN to
predict electricity outages in Baghdad for long and
short-term.
5.1 Analyzing Dataset

This paper considers studying the effect of
temperature and load on outage rates for different
seasons (months and hours per day). Fig. 3 contains
four graphs, each of which represents the load on the
Baghdad power grid for the year 2023. The horizontal
axis (x-axis) denotes time. The vertical axis (y-axis)
denotes the load. The figures represent the applied
electricity (load) flowing through the internal grid in
(MW). The graphs show the change in this load over
time. Peaks indicate periods of high electrical load,
while wvalleys indicate periods of low load. The
electricity grid in Baghdad exhibited notable seasonal
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variability in 2023, with different peaks and valleys
occurring at different times of the year. Fig. 3 (a) in
autumn (November and October), the electricity load
reached 734 MW on the 22 of October, 2023, and the
minimum load reached 388 MW on the 17" of
November, 2023. In Fig. 3(b), which represents Spring
(March and April), on the 30th of April,2023, the
maximum load reached a peak of 1031 MW, while the
minimum load on the 18th of March, 2023 decreased
to 627 MW. During the summer season (May to
September), Fig. 3(c) shows the maximum load of
1604 MW was observed on the 16% of August, 2023,
and a minimum of 784 MW was observed on the 29
of July, 2023. These summer months saw a significant
change in loads. Fig. 3 (d) during the winter season
(January, February, and December): on the 7% of
February, 2023, the maximum load is 888 MW, and on
the 14% of January, 2023, the minimum load is 329
MW. These numbers show how Baghdad's power
loads vary throughout the year, with summertime
displaying the highest power load. Fig. (4) shows four
graphs, each of which could show the Baghdad power
grid's 2023 outage rate. Time is represented by the
horizontal axis (x-axis). The Baghdad houtly outage
rate is represented by the vertical axis (y-axis). The
outage rate fluctuates over time, as seen in the graphs.
Periods of low outage rates are represented by the
valleys, and periods of high outage rates are indicated
by the peaks. Seasonal graphs in 2023 showed how
Baghdad's rates of power outages varied dramatically
with the seasons. Fig. 4 (a) in autumn (November and
October), it can be noticed that only a few days had
witnessed one or two hours of outage during this time,
while the outage rate was zero on most other days,
indicating generally stable conditions for the power
supply. Fig. 4 (b) Spring (March and April) reflects that
on a few days, the maximum outage rate in the spring
could reach five hours. On other days, there were
blackouts that lasted for two or three hours. On the
other hand, most days were without power outages,
indicating sporadic but larger disruptions than in the
autumn. Fig4 (c) shows that in Summer (May to
September), the maximum rates of 14, 13, and 12
hours were experienced on numerous days during
summer, which saw the worst power outages.This
suggests a time when the power infrastructure is under
significant stress, most likely because of rising cooling
demand. Fig.4 (d) in winter (January, February,
December), on the 11%™ of January, 2023, the
maximum outage rate was recorded at 13 hours. But
there were also a few days, like February 27%, 2023,
when there were no outages, indicating variations in
power stability in the winter months. These findings
demonstrate the notable seasonal variations in
Baghdad's power reliability, with the summer months
exhibiting the highest frequency and length of outages,
probably because of higher demand and strain on the
electrical grid.

Fig. 5 shows four graphs representing the
temperature in Baghdad at different seasons of the
year. The horizontal axis (x-axis) denotes time. The (y-
axis) shows the temperature in Baghdad in Celsius.
The graphs show the change in temperature with time.
Peaks indicate high temperatures, while wvalleys
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indicate low temperatures. The data for each season
can be analyzed to identify specific seasonal changes in
Baghdad for 2023. Fig.5(a) shows that in Autumn
(November and October), the maximum temperatute
on 11t October 2023 was 31.63°C, while the
minimum was 11.01 °C on November 29%, 2023. Fig.5
(b) shows that in Spring (March and April), On April
28, 2023, the temperature reached a maximum of 28.
On April 1st, 2023, the minimum temperature for the
season was 11.59 degrees Celsius. During the summer
season (May to September) in Fig.5(c), the maximum

/L%Q)

temperature was 51.24°C on March 13%, 2023, while
the minimum temperature was 29.05 °C observed on
May 4%,2023. Fig. 5 (d) shows that in winter (January,
February, and December), the maximum temperature
on February 26t 2023, was 17.49°C, while the
minimum  temperature recorded on February
10%.2023, was 5.37°C. These temperature tecords
show the seasonal variability of Baghdad’s climate,
which includes an extremely hot summer and a mild,
cool winter.
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Figure (3): load vs. Date for different seasons in Baghdad (2023) (a) Autumn (b) Spring (c) Summer (d) Winter
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Figure (5): Temperature vs. Time in Baghdad city for(2023) (a) Autumn (b) Spring (c) Summer(d) Winter

Fig.6 shows the amount of power consumed in
each of the four seasons: Spring, Autumn, Summer,
and Winter over a 24-hour period. Each graph is
explained in detail below: Fig.6 (a) in Autumn,
Approximately 5500 MW of power were consumed at
1 AM in the morning; by 5-6 AM, it dropped to
roughly 4900 MW by 12 PM, the load had stabilized
after increasing gradually. For the remainder of the
day, this steady level is maintained. Fig.6 (b) In spring,
the power load was about 4250 MW at 1 AM. By 5 or
6 AM, it significantly drops to roughly 3800 MW.
Then, the load begins to increase and reaches a peak
of about 4800 MW by 4 PM up until 9 PM; when it
starts to decline, it stays steady at this peak. Fig. 6 (c)
In summer, during the whole 24-hour period, the
power load was essentially constant. There is a small
variation between 6400 MW and 6500 MW. Fig.6 (d).
During the day of winter, the power load remains
consistent. It falls between 5700 and 6000 MW. In
conclusion, power load is more variable in the spring
and autumn, showing observable daily peaks and
valleys but staying comparatively constant in the
summer and winter.

Baghdad load
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Baghdad load vs Time in Autumn
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Baghdad load vs Time in Spring
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Baghdad load vs Time in winter
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Figure (6): load vs time (Hours) in Baghdad(2023)
(@)Autumn (b) Spring(c) Summer(d) Winter

Overall, from the Figs. (3, 4, 5, and 6) shown
above, it can be observed that the rising temperature
in Iraq during the summer leads to increased loads
(due to the use of cooling devices, such as fans and air
conditioners), which in turn results in a higher rate of
power cuts. Additionally, the elevated temperatures
adversely affect the quality of power plants, causing a
reduction in the number of supply hours. In contrast,
during the Winter in January, despite the lower loads,
there is an increase in the rate of power cuts. This is
due to the impact of low temperatures on the cables.
Typically, the sheaths of wires and cables are
composed of PVC or rubber. When subjected to low
temperatures, they solidify and become fragile. This
results in the cable sheaths becoming damaged and
detaching easily when subjected to even the slightest
external strain, causing them to malfunction and
consequently increasing the rate of power outages.
Meanwhile, moderate temperatures in spring and
autumn don’t lead to more load, which causes balance
in the power supply.
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5.2 Prediction Results

This section presents the main results obtained by
using CNN to predict power outages in the long and
short term. The simulation test was conducted on
(CPU Core i7 13620H, RAM 16GB DDR5, GPU
RTX 4050 6GB, Storage 1TB SSD, OS WIN11) using
The Anaconda Jupyter environment used with the
libraries Keras, Numpy, Pandas, and Matplotlib to
train the model to predict power outages. The deep
learning models were examined by dividing the short
and long-term datasets into 80% to train the models
and 20% to test their performance. The deep learning
method, CNN performance is evaluated by metrics
like Mean Squared FError (MSE) by using eq.
(2)calculates the average squared difference between
predicted and actual values, Mean Absolute Error
(MAE), by using eq. (3)measures the average absolute
difference, and (Root Mean Squared Error) measures
the square root of the MSE as the RMSE using eq. (4).
The model is better the closer RMSE, MSE, and MAE
are to zero. Table 2 shows the performance metrics for
1D-CNN in short-term and long-term conditions. In
the short term, CNN performs well, as evaluated by
the low error metrics with MAE of 0.0077126, MSE
of 0.0004874, and RMSE of 0.0220765. These values
indicate high accuracy and low error in the prediction.
But the performance of CNN deteriorates for long-
term forecasting, with higher error metrics, especially
MAE of 0.077521, MSE of 0.0108372, and RMSE of
0.104101687; this difference in results between short-
term and long-term results is caused by the fact that
many factors will influence accuracy because the
model's numerous inputs change over time. Fig.7
shows the comparison between actual data and
predicted data for short-term datasets, and Fig.8
depicts the comparison between the actual data and
predicted data for long-term datasets. Table 3 shows
the predicted outage rate obtained by the CNN for
both short and long term.

MSE=<3N,(vi-yD2 @)
MAE=<3N lyi—y'| .. 3)
RMSE = VMSE = %Z%\Ll(yi -yH2z )
Tabel (2): Results of CNN
Case study Metrics
MAE MSE RMSE
Short-Term | 0.0077 0.00048 | 0.0220
Long -Term | 0.0775 0.01083 | 0.1041
Tabel (3): Samples of outage rate predicted by
models
Prediction for long- | Prediction for short-
term (outage rate term (outage rate
(Hours)) (Hours))
Actual Predicted | Actual | Predicted
(Hours) (Hours) |(Hours)| (Hours)
5 4.903309345 1 1.030387878
2 1.881246567 1 1.041221142
3 3.022894382 1 1.031022787
3 3.210447788 1 1.017275929
3 3.011624575 1 1.007216334
3 3.349903584 1 1.001157641
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Comparison between Actual and Predicted using CNN
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Figure (8): Comparison between actual and predicted data for the long term using CNN

6. Conclusion

The purpose of this study is to analyze data for the
city of Baghdad collected from the Iraqi Ministry of
Electricity and NASA website. The key factors
considered in this study include temperature, electrical
loads, and power outage hours, which are examined to
show their wvariation across seasons and the
relationships between them. This paper also explored
how temperature and electrical loads influence power
outages in Baghdad. The data was used to train a 1D-
CNN model for predicting power outages in Baghdad
over both long-term and short-term periods. The
results showed accurate short-term predictions with a
mean absolute error (MAE=0.0077), while long-term
predictions also achieved (MAE=0.0775) results.
Future work could improve prediction accuracy by
using various optimization methods to select the best
hyperparameters for training, leading to better
outcomes. Furthermore, the collected data could be
expanded to include other governorates in Iraq in

addition to Baghdad.
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