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Abstract 

Fused deposition modeling (FDM) is a commonly used 3D printing 

technique that involves heating, extruding, and depositing thermoplastic 

polymer filaments. The chosen processing settings greatly influence the 

quality of FDM components. In this study, the Taguchi technique and 

artificial neural network were employed to predict the ultimate tensile 

strength of FDM components and establish a mathematical model. The 

mechanical properties of ABS (Acrylonitrile Butadiene Styrene) were 

analyzed by varying parameters such as layer thickness, printing speed, 

direction angle, number of parameters, and nozzle temperature at five 

different levels. FDM 3D printers were used to fabricate samples for 

testing, following the ASTM-D638 standards. The results indicated that 

the printing process factors had a significant impact on tensile strength, 

with test values ranging from 31 to 38 MPa. The neural network achieved 

an average percentage error of 1.42% when predicting the tensile strength 

values of FDM components. While the analytical model exhibited an 

average percentage error of 7.297%. The Shell number of (28.73%) which is 

the largest effect on tensile strength and layer thickness has a small effect at 

(9.94%). 

Keywords: FDM, ABS, 3D Print Parameters, Tensile Strength, Artificial Neural 

Network. 

على مقاومة الشد باس تخدام  ABSالبحث التجريبي ودراسة متغيرات عملية خيوط 

 الش بكة العصبية الاصطناعية ونموذج الانحدار
 

 مصطفى عادل عبد الله حامد

 الخلاصة: 

والبثق  FDMنمذجة الترسيب المنصهر ) تتضمن التسخين  الاس تخدام  ثلاثية الأبعاد شائعة  طباعة  تقنية  ( هي 

عدادات المعالجة المختارة. في    FDMوترسيب خيوط البوليمر البلاستيكية الحرارية. تتأأثر جودة مكونات   لى حد كبير باإ اإ

تقنية تا تم اس تخدام  بقوة الشدكهذه الدراسة،  للتنبؤ  الاصطناعية  والش بكة العصبية  نشاء   FDMلمكونات    وشي  واإ

لـ   الميكانيكية  الخواص  تحليل  تم  رياضي.  الطباعة    ABSنموذج  وسرعة  الطبقة  سماكة  مثل  مختلفة  عوامل  خلال  من 

  FDMودرجة حرارة الفوهة على خمسة مس تويات مختلفة. تم اس تخدام طابعات    طبقات القشرةوزاوية الاتجاه وعدد ا

  فوف ، باس تخدام طريقة التصميم التجريبي للصفASTM-D638ثلاثية الأبعاد لتصنيع عينات للاختبار، باتباع معايير  

مح  Taguchiالمتعامد   على قوة    دداتلتعيين  تأأثير كبير  عوامل عملية الطباعة كان لها  لى أأن  العملية. أأشارت النتائج اإ

من   الاختبار  قيم  تراوحت  حيث  لى    31الشد،  العصبية  كامي  38اإ الش بكة  حققت  معدل باسكال.  خطا   معدل 

القشرة  عدد طبقات  •    %.7.297خطأأ قدره    الرياضي% عند التنبؤ بقيم قوة الشد، بينما أأظهر النموذج ا1.42مقداره

 (. % 9.94( وسمك الطبقة له تأأثير بس يط بنس بة )%28.73) بنس بةعلى قوة الشد  اكبر عامل مؤثر 

المفتاحية الترسيب   :الكلمات  الطابعة    ,ةالبلاستيكي  ABS  خيوط,لمنصهربانمذجة  الشد,الابعاد  الثلاثيةمتغيرات   قوة 

 ة. ش بكة العصبية الاصطناعيال ,
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1. Introduction  
Additive manufacturing (AM), often known as 3D 

printing, uses 3D models to produce items layer by 
layer. This technology speeds up and reduces design 
and production costs. For complex shapes, traditional 
manufacturing takes time and money, so many 
companies use 3D printing equipment to build the 
parts during design. FFF(Fused Filament Fabrication), 
SLA(Standard Tessellation Language). One of many 
3D AM devices is fused deposition modeling (FDM), 
which uses layers of thermoplastic filaments. 

Additive manufacturing is a promising emerging 
industrial technology. Despite its widespread use, this 
approach requires additional research [1]. Fused 
Deposition Modeling (FDM) printers utilize 
programmable extrusion machines to transform CAD 
models into physical components. An individualized 
software program utilizes a stable 3D model in STL 
format to produce the G code necessary for printing. 
The solid model is first divided into layers before 
generating the G-code. The layers are sequentially 
generated using thermoplastic materials extruded 
through a nozzle positioned on the printing platform. 
The extruder traverses the X-Y plane. In FDM, semi-
molten thermoplastic filaments are expelled via a 
hardening nozzle at room temperature [3]. 

The FDM process is influenced by various 
elements that impact the specifications of the model. 
These factors have an impact on standard samples [4]. 
Optimizing the beneficial effects of process variables 
(FDM) might be challenging to achieve through their 
combination. Effect [5]. At present, the aerospace and 
dental sectors utilize FDM technology for the 
production of prototypes and functional components 
[6]. Fused Deposition Modeling (FDM) is a technique 
that uses extruded filamentous materials to build a 
final object. The materials are printed in 2D layers on 
a platform [7]. 

A multitude of researchers are currently engaged in 
the development of novel materials for various 
applications in aviation, medicine, and 
communications. Certain disadvantages are associated 
with utilizing FDM to produce work parts [8]. Garg et 
al. [9] investigated the impact of the build direction (X, 
Y, Z) and point angle on the tensile strength and 
surface roughness in three-dimensional space. The 
ABS created has undergone evaluation by FDM. Pico 
et al. [10] conducted ABS research to investigate the 
upper and lower surface layers, grout spacing, and layer 
accuracy. Mathematical modeling included 
optimization and ANOVA techniques. The process 
parameters that exhibited the greatest tensile strength 
and the lowest cost were identified. Alvarez et al. [11] 
The researchers investigated the mechanical 
characteristics of 3D-printed objects made from ABS. 
Experimental samples were printed with varying fill 
ratios to assess this impact while keeping all other 
printing parameters constant and showing the effect of 
no of shell in the process. Lee et al. examined a rapid 
prototyping machine that is compatible with ABS 
material using the FDM method [12]. Figure 1 shows 
the Print designs. The FDM printer heads move in the 
X and Y axes, and The Z axis moves the filament. 
CAD software is used to produce a 3D FDM design. 

After saving in STL format, the slicer software 
segments the 3D model.  

FDM technology is environmentally friendly, 
flexible, and low maintenance compared to other AM 
technologies. Additionally, 3D printing reduces the 
consumption of wasted materials, labor, and 
manufacturing delays. Some disadvantages of FDM 
include: 

Structure requirements, long construction times, 
and temperature-induced delamination. Aviation, civil 
engineering, automotive, medicine, etc. use 3D 
printing [15-19]. 

Tianyun et al. [20] ultimate tensile strength of 3D 
ABS materials made with FDM. Variable layer 
thicknesses were applied at angles. Multipurpose 
plastic test specimens were generated by ISO 527-2-
2012. The theoretical model accurately predicted the 
tensile strength of FDM at all angles and thicknesses. 
When printing angle, the layer thickness is maximum, 
and the ultimate tensile strength minimum. Using 
polylactic acid (PLA), Abbas et al. [21] examined how 
process factors affect the dimensional deviation of 
3D-printed FDM. Layer height, contours, filler 
density, angle, print speed, nozzle temperature, bed 
temperature, and print direction are selected for the 
printing process. The pilot trials used a three-level 
critical screening design (DSD). The filler density 
mainly influenced the length and width deviation. 

Dezaki et al. [22] investigated how filler density 
affects surface roughness and tensile strength. 
Concentric, zigzag, triangular, grid, and pattern tool 
paths with FDM machine-specific densities were used. 
FEA compares printing and simulation processes. 
Grid paths and concentric tools have the best surface 
quality. In contrast, ultimate tensile strength testing 
found that the zigzag pattern had insufficient design, 
adhesion, and mechanical properties. Daddonna et al. 
[23] focused on improving FDM. Parameters using 
ABS. The layer thickness, printing speed, and filler 
ratio were selected. The L16 Taguchi matrix, 
consisting of three components with four levels, was 
used to generate the experiment. Desire has also been 
used to optimize the FDM process parameters. The 
results indicated that the optimal variables were layer 
thickness of 0.3 mm, print speed of 81 mm/s, fill life 
of 55%, filament length of 2.10 m, component weight 
of 5.68 g, and printing time of 20.01 minutes. Pang et 
al. [24] examined how printing temperature affects the 
bonding and tensile properties. PLA test samples were 
printed at 180-240°C, increments of 10°C at a time. 
Uniaxial tensile testing for each variant was repeated 
five times under ASTM D638-14 at a 1 mm/min rate. 
Based on the results, specifications printed at a higher 
temperature perform better. 

The study examines ABS filament for FDM 
components and the effect of the 3d printing factor on 
tensile strength. The ANN (Artificial Neural Network) 
and regression model predict the ultimate tensile 
strength and the largest expected working error. 
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Figure (1): Shown the principal part for FDM-3D-

printing. 

 

2. Materials and Process 
Material selection is crucial for 3D printing. 

Application type and mechanical properties can 
influence material selection. This section discusses 
material and printing factors that affect manufacturing. 

2.1. Material 
ABS, or Acrylonitrile Butadiene Styrene, is a 

popular 3D printing material. This biodegradable 
thermoplastic is manufactured from sugarcane, 
tapioca, corn, and potato starch. ABS is easy to print 
and does not release harmful fumes. ABS may degrade 
and produce lactic acid, making it suitable for surgical 
implants and suturing. 

FDM can print items with varied fill densities, its 
biggest advantage. We save material, money, and time 
and reduce product weight. ABS Creality filament was 
with 1.75mm filament wire Used in Creality Ender-5 
3D-printing. The tensile specimen was tested since it 
was easy to prepare and suitable for FDM. 

2.2. Process parameters 
Layer thickness greatly affects printing time, 

accuracy, and mechanical qualities. Thick layers reduce 
the modulus of elasticity, tensile strength, and 
elongation at break. The surface roughness increases 
with the number of layers [25].  

The ideal FDM printing speed depends on the 
material, extrusion temperature, and resolution The 
print speed refers to the rate at which the nozzle tip 
covers a distance of 1 millimeter per second.  

Bonding and mechanical strength. Faster printing 
results in more voids and worse layer bonding [20]. 
Lower printing speeds increase manufacturing time, so 
the appropriate speed must be chosen to achieve the 
desired result. The raster angle represents the printing 
path on the platform, along with the interior of the 
completed product, concerning the x-axis [26][27].  
 

3. Experiment Design 
The study investigated how several factors affect 

tensile strength. Few parameters were maintained, 
such as a filling density of 80%, a Gyroid pattern, and 

a bed temperature of 55°C. Five levels of layer 
thickness, print speed, print temperature, direction 
angle, and shell number were used in this investigation. 
The levels and values of specific process parameters 
are in Table 1. And shown in Figure (2). 

Design of experiments (DOE) solves the 
problems. The DOE subfield of statistics improves 
trial outcomes by improving planning, organization, 
and execution. Taguchi's analysis reduces 
experimentation in most investigations. This research 
used the L25 Taguchi orthogonal matrix to examine 
the effect of selected parameters; Table 2 displays the 
ABS samples produced.  

 

4. Specimens Fabrication 
Design is the most important part of production; 

SolidWorks was used to design the sample. The CAD 
files are then converted to STL files. Ultimate CURA 
software configures the printing parameters to print 
the component. The features and size required may 
affect time, but the complexity of the design does not. 
The Reality Ender-5 3D printer made the tensile 
samples. Figure 3 shows that the samples were 
manufactured according to ASTM D638 standard.  

 

 
Figure (2): 3D printer’s process parameters. 

 
Table (1): shows the parameter levels used. 

Factor Level 

Layer thickness 
(mm) 

0.1 0.15 0.2 0.25 0.3 

Printing speed 
(mm/s) 

40 45 50 55 60 

Print temp C 230 235 240 245 250 

Orientation angle 0 20 45 70 90 

Shell Number 1 2 3 4 5 

 
Table (2): shows the parameters used in the 

experiment. 

No 

Layer 
thickne

ss 
(mm) 

Printin
g speed 
(mm/s) 

Printi
ng 

temp 
(C) 

Shell 
num
ber 

Angl
e 

(deg
ree) 

1 0.10 40 230 1 0 

2 0.10 45 235 2 20 

3 0.10 50 240 3 45 

4 0.10 55 245 4 70 

5 0.10 60 250 5 90 

6 0.15 40 235 3 70 

7 0.15 45 240 4 90 

8 0.15 50 245 5 0 

9 0.15 55 250 1 20 

10 0.15 60 230 2 45 

11 0.20 40 240 5 20 

12 0.20 45 245 1 45 

13 0.20 50 250 2 70 
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14 0.20 55 230 3 90 

15 0.20 60 235 4 0 

16 0.25 40 245 2 90 

17 0.25 45 250 3 0 

18 0.25 50 230 4 20 

19 0.25 55 235 5 45 

20 0.25 60 240 1 70 

21 0.30 40 250 4 45 

22 0.30 45 230 5 70 

23 0.30 50 235 1 90 

24 0.30 55 240 2 0 

25 0.30 60 245 3 20 

 

 

 

 
Figure (3): (a) shown tension sample used ASTM D638 standard (b) 25 ABS specimen. 

 

4. Results and discussions: 
ANN are information processing paradigms 

modeled after biological nerve systems like the brain. 
Neurons form an ANN's layers. Neurons receive and 
output signals. Neural network predictive modeling 
implicitly recognizes complicated nonlinear 
correlations and independent variable interactions. A 
black box prediction model using multi-layered. ANN 
may adapt the system model since they are da-driven 
and self-adaptive. Fit is seen without describing the 
model's functional form [16, 17]. The output is 
predicted using an artificial neural network. Neural 
networks have three layers: input, output, and hidden. 
Between input and output parameters, the ANN 
model was trained. See Figure 4 for the neural fitting 
tool import of the 5x25 input matrix and 1x25 output 
data.  

The ANN was trained. Different regression values 
are evaluated to relate the outputs to the objectives. To 
discover relationships between outputs and objectives, 
several regression values are examined. A regression R-
value close to 1 indicates the best fit and strong 

association between variables, while 0 indicates 
random association. Figure 6 contains 4 graphs. 
Training data is used to train the model, while 
validation data is used to evaluate the model's 
performance during training. After training, test data is 
used to evaluate the model, and all-in plots  

Provide a final, unbiased measure of the model's 
performance  

In terms of accuracy, indicating the future 
usefulness of the product. The dashed line in each plot 
reflects the optimal target output ratios, while the solid 
line refers to the regression model. 

A higher signal-to-noise ratio (S/N) is indicative of 
superior performance across the board. Therefore, the 
highest value setting for the machining parameters is 
the best option.  The (tensile strength) was maximized 
based on the projected ideal parameter value, which is 
noted in Figure 5. The x-axis in the graphs represents 
the value of each machining parameter, while the y-
axis represents the response value (tensile strength).  

The analysis of variance analysis (ANOVA) 
method was used to analyze the results of experiments 
to determine the impact of 3D printing factors on 
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tensile strength that is dependent on cutting variables 
Table 3 exhibits the findings of the analysis of variance 
for tensile strength, Consequently, the most effective 
variable is the Shell number of (28.73%) which is 

second the angle of (25.75%), while nozzle 
temperature, print speed, and layer thickness have a 
small effect at (15.34%)(15.15%) and (9.94%) 
respectively. 

 

 
Figure (4): Shown the ultimate tensile strength obtained using ANN. 
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Figure (5): Schematic of analysis findings. 
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Table (3): ANOVA analysis findings. 
Source DOF SS MS P% 

layer thickness 4 8.28 2.07 9.94% 

print speed 4 12.62 3.16 15.15% 

nozzle 
temperature 

4 12.78 3.19 15.34% 

Shell number 4 23.94 5.99 28.73% 

angle 4 22.28 5.57 26.75% 

error  3.33  4% 

Total 21 83.32  100% 

 
Table (4): The Comparative assessment of predictive 

models. 

No 

Tensile 
strengt

h 
(MPa) 

ANN 
Predict

ed 
(MPa) 

Error % 
of                 

ANN 

Regressi
on 

Model 

Error % 
of 

Regress
ion 

model 

1 31.625 31.701 1.340 31.114 1.616 

2 33.365 32.669 3.582 31.705 4.976 

3 35.975 36.262 0.592 32.174 10.565 

4 35.805 35.804 1.397 32.204 10.057 

5 38.245 38.197 1.433 32.620 14.708 

6 35.535 35.501 1.500 31.981 10.000 

7 37.455 37.568 1.033 32.583 13.007 

8 32.495 33.647 -2.008 31.475 3.138 

9 32.845 32.824 1.583 31.384 4.449 

10 34.845 34.987 1.027 31.968 8.257 

11 33.975 33.470 2.957 31.748 6.554 

12 37.455 37.455 1.335 31.298 16.439 

13 34.665 35.194 -0.084 31.911 7.945 

14 33.115 33.193 1.272 31.640 4.456 

15 35.365 33.913 5.518 32.026 9.442 

16 30.765 30.873 1.273 30.816 -0.164 

17 32.675 32.583 1.811 31.409 3.873 

18 34.495 34.128 2.513 31.723 8.035 

19 34.595 34.594 1.446 31.893 7.809 

20 35.195 35.176 1.473 32.169 8.599 

21 33.715 33.462 2.231 31.796 5.693 

22 36.855 36.871 1.313 32.384 12.131 

23 32.845 32.662 2.077 31.455 4.234 

24 32.335 33.163 -1.016 31.162 3.629 

25 32.245 32.771 -0.082 31.282 2.985 

The relationship between the output and the target 
is shown by the value of R. R = 1 indicates a linear 
relationship between the outputs and, If R values are 
close to zero, the output and target are not linearly 
related. Training, validation, testing. 

ANN uses system sample data to generate fast 
predictions, saving time and money. Based on the 
ANN sample data, the mathematical model was 
established in Equation 1. 

The experimental tensile test values ranged from 
(30.765-38.241) MPa, in samples (16) and (5) with 
stress-strain curves as shown in figure (6) which were 
determined by the testing instruments. The LM 
algorithm of ANN technology can predict the tensile 
test values, which are close to the real values between 
(30.873-32.620) MPa. The first-order mathematical 
model predicts tensile values between (30.873-30.873) 
MPa. The ANN error values ranged from (-2.008-
3.582) %, while the mathematical model error values 
ranged from (-0.164-16.439) %. 
 

Tensile strength = 22.5 − 0.12 (layer thickness) + 
0.043 (printing speed) + 1.199 (shell number) + 

0.1258 (orientation angle) + 0.055 (print temperature) 
…………(1) 

 
Figure (7) illustrates the comparison of tensile 

strength values obtained from three distinct sources: 
tensile test values (in MPa), anticipated ANN values 
(in MPa), and mathematical model values. The graph 
indicates a distinction among the three sets of values. 
The Artificial Neural Network (ANN) predictions 
tend to exhibit larger values compared to the actual 
tensile test results, but the values obtained from the 
mathematical model seem to be lower. The 
aforementioned statement suggests that the Artificial 
Neural Network (ANN) approach tends to provide 
higher estimations for the tensile strength, whilst the 
mathematical model tends to provide lower 
estimations. It is crucial to acknowledge that these 
disparities may arise from the constraints and 
presumptions inherent in each approach. 
Nevertheless, the graph offers useful insights into the 
variations and disparities among the three approaches 
in estimating tensile strength.

 

 
Figure (6): The sample (5) maximum tensile strength and sample (16) minimum tensile strength. 
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Figure (7): Correlation between tensile test values and anticipated values. 

 

5. Conclusions 
The researchers examined the impact of various 

factors, including layer thickness, printing speed, 
printing temperature, shell number, and orientation 
angle, on the tensile strength of the ABS sample. They 
employed artificial neural network (ANN) and 
mathematical regression models to analyze the data 
and identify the optimal printing parameters that 
would result in the highest tensile strength. 

• The range of tensile strength measurements obtained 
was between 30.765 and 38.241 MPa, demonstrating 
the substantial impact of the printing process 
parameters on tensile strength. The ideal variables 
for achieving maximum tensile strength were 
determined to be a layer thickness of 0.10 mm, a 
printing speed of 60 mm/s, a print temperature of 
250 °C, a direction angle of 90°, and a total of 5 
circumferential numbers. 

• The predictions made by both the artificial neural 
network (ANN) and mathematical model were 
compared to the results obtained from the tensile 
tests with an average percentage error of 1.42% 
when predicting the tensile strength values of FDM 
components. While the analytical model exhibited an 
average percentage error of 7.297%.  

• The Shell number of (28.73%) which is the largest 
effect on tensile strength and layer thickness has a 
small effect at (9.94%). 
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