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1. Introduction

Renal diseases involve gradual loss of renal
function in filtering metabolic wastes and blood fluids,

Abstract

Kidney disease is a global health concern, often leading to kidney failure
and impaired function. Artificial intelligence and deep learning have been
extensively researched, with numerous proposed models and methods to
improve kidney disease diagnosis. This work aims to enhance the efficiency
and accuracy of the diagnostic system for kidney disease by using Deep
Learning, thereby contributing to effective healthcare delivery. This work
proposed three models: CNN, CNN-XGBoost and CNN-RF to extract
features and classify kidney Ultrasound images into four categories: three
abnormal cases (stones, hydronephrosis, and cysts) and one normal case. The
models were tested on a real dataset of 1260 kidney ultrasound images (from
1000 patients) collected from the Lithotripsy Centre in Iraq. CNN models are
often viewed as black boxes due to the challenge of understanding their
learned behaviors, Visualizing Intermediate Activations (VIA) was used to
address this issue. The proposed framework was assessed based on precision,
recall, F1-score, and accuracy. CNN-RF is the most accurate model, with an
accuracy of 99.6%. This study can potentially assist radiologists in high-
volume medical facilities and enhance the accuracy of the diagnostic system
for kidney disease.

Keywords: CNN, Deep Leatning, Feature Extraction, Kidney Diseases, RF,
Ultrasound Images, Visualization.
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kidney diseases include kinematic damage, kidney
cysts, kidney stones, hydronephrosis, and other kidney
infections [1]. Accounting shows that kidney diseases
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caused 1.34 and 1.36 million deaths in the years 2021
and 2022, according to the World Health
Organization. Kidney diseases were Iraq's main cause
of death in 2022, with 26,000 fatalities and 25,000
deaths in 2021. Kidney diseases include stones that are
concretions that materialize in the presence of elevated
concentrations of calcium, oxalate, cystine, or
phosphate and insufficient fluid [2]. Accumulation of
crystals in  the kidney regions, known as
nephrolithiasis, leads to renal failure in advanced stages
[3]. Cystic renal disease is a pathological state
distinguished by the existence of multiple fluid-filled
cysts within the renal tissue. These cysts exert pressure
on the nephrons responsible for regulating kidney
function, resulting in renal failure [4]. Obstructive
hydronephrosis is the term wused to describe
anatomical and functional problems with the kidneys
brought on by obstructions in the utine's flow, which
makes it difficult to urinate [5]. Hematepuria and the
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presence of hydronephrosis on ultrasound imaging
can be valuable indicators of renal colic. [6].
Ultrasound imaging, known as sonography, high-
frequency sound waves are employed to diagnose soft
tissues like muscles and internal organs, including
kidney diagnosis [7], [8]. Renal ultrasound (US) is a
preferred imaging modality because of a safe, non-
invasive, and cost-effective test, US is a useful tool for
making medical decisions [9].

Artificial intelligence (AI) and DL play crucial roles
in healthcare, particularly in diagnosing various
diseases [10], [11]. Al is a branch of computer science
that can be applied to design software models that can
imitate human tasks [12], [13]. Deep-learning
technology is a branch of machine learning that uses
multiple artificial neurons to identify intricate features
in input datasets, addressing complex real-world issues
[14], [15].
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Figure (1): Processing diagram for the suggested methods.

Al and deep learning for better-diagnosing kidney
diseases have been widely researched with many
proposed models and methods [16], [17]. In 2019
ResNet-100 and XGboost were used for the binary
classification of 4,505 kidney ultrasound images,
achieving an accuracy of 85.6% [18]. Kokil and
Sudharson [19] proposed a two-stage approach for
classifying kidney abnormalities in ultrasound images.
first, a pre-trained convolutional neural network
(CNN) was utilized to extract relevant features from
the images. Then, SVM was employed to classify the
extracted features into three categories: normal, cystic,
and stoned. In 2020, Sudharson and Kokil developed
an approach ensemble ResNet-101, Shuffle Net, and
MobileNet-v2 models to extract features (from 4940
kidney US images), an SVM employed to classify the
images into four classes (normal, cyst, stone, and
tumour). The method achieved an accuracy of 96.54%
[20]. In 2023 Raja Sankari Vm et al. suggested a custom
CNN model to classify 1000 US images into binary
classes, with a classification accuracy of 95% [21].

In this work, the CNN model was employed to
extract features, fully connected layers, RF and
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XGboost algorithms were used to classify kidney
ultrasound images into four classes (normal, stone,
hydronephrosis, and cysts), the Visualizing
Intermediate  Activations (VIA) was wused to
understand the CNN layers. The models were trained
and tested on ultrasound images of kidneys collected
from the Lithotripsy Centre in Iraq. The major
contributions of this work are:

A computer-aided diagnosis system based on a DL
model to enhance the accuracy of kidney disease
classification from normal.

A CNN extracted features from the ultrasound
images. These features were fed into fully connected
layers, XGBoost and Random Forest algorithms for
multiclassification tasks.

2. Methodology

The process of the proposed models is illustrated
in Figure 1. The preprocessing and data collecting are
the two primary aspects of this section. In the next
paragraphs, the details of these sections are presented.

3. The Dataset Collection
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For this research, real kidney ultrasound datasets
were obtained from the Lithotripsy Center at Al-
Diwaniyah General Teaching Hospital, Iraq. The
images were acquired using a Philips HD11 XE
ultrasound system, which produces images in DICOM
format with a resolution of 800x600 pixels. The dataset
of images was diagnosed by three urologists and one
radiologist and categorized into four categories:
normal, cyst, hydronephrosis, and stone. Obtained
four cases a total of 1260 US images from 1000
patients (cyst, stone, hydronephrosis, and normal), 315
US images were collected for each class. Figure (2)
displays three classes of kidney disease and the normal
case and presents the region of interest (ROI).

4. Preprocessing

The preparation of data is crucial in medical
imaging. Pre-processing is frequently necessary to do
significant data analysis. In this work, pre-processing is
done in four steps: normalization, scaling, cropping,
and the format of the image. Image format, the images
were preprocessed to prepare them for the feature
extraction step. First of all, the images that were
collected, were converted from DICOM to BITMAP.
After that, the images are organized and sepatrated
randomly into 80% for training (1008 images) and 20%
for testing (252 images).

In the image resizing the size of the images was
changed to a new size (224 x 224). It is preferable to
resize all images to a uniform size, and standard image
dimensions for CNN training often fall between 64 X
64 and 256 X 256 [22] [23]. Then Normalize the values
of pixels from a resolution range of (0- 255) to a range
of (0 - 1) to obtain neural networks that operate with
small input values [24]. It is recommended for neural
network-based classification methods [25].

5. The Proposed Models:

5.1 Feature Extractions
Deep learning involves
identifying meaningful patterns from pre-processed
data to enhance model performance in tasks like
classification,  object  detection, and  image
segmentation [20]. There are several techniques for
that purpose deep CNNSs are the primary method for
feature extraction in Al, employing convolutional
layers, pooling layers, and activation functions to

feature extraction,

extract low-level features, reduce spatial resolution,
and learn complex relationships [27]. This work used
CNN model to extract features from kidney US
images.
5.1.1 CNN

CNN is a prominent algorithm in deep learning
methods and has been used in various applications
such as image processing, classification, and
enhancement tasks [28][29]. The proposed CNN
architecture consists of three convolution layers each
followed by MaxPooling layers and an activation
function (Relu). Following the last convolutional
block, a flattened layer was used to keep the output of
convolution layers into a one-dimensional vector, the
dense layer's (fully connected layers) classify the
images into four classes, The CNN structure with
dense layers is illustrated in Figure (3).
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5.2 Classification

The computational complexity of the model is
decreased by the image classification algorithms.
Classifying images from numerous modalities to
discriminate between different disease types of
biomarkers is the ultimate goal of medical imaging
analysis [30]. In this work, extracted features were fed
into fully connected layers or to machine learning
algorithms: FC, XGBoost and RF to classify kidney US
images. The models predict four classes with the
highest probability based on the learned features.
5.2.1 Fully Connected Layer

Classification layers mainly include the Fully
connected (FC) layers also referred to as a dense layer
[31]. The proposed CNN architecture was used to
extract features, dense layers (fully connected layers)
with SoftMax activation function classify the images
into four classes, The CNN structure with dense layers
is illustrated in figure (3).

5.2.2 XGBoost

Extreme Gradient Boosting (XGboost) is a
decision tree-boosting model developed by Chen et al.
[32]. XGBoost can handle continuous features by
dividing them into buckets during training. It
considers the distribution of data points within each
bucket to find optimal split points for decision trees.
Each iteration of XGBoost adds a new decision tree
to the ensemble, focusing on improving the model's
performance based on a specific loss function.
XGBoost objective function is the sum of the
regularization function for every prediction (K trees)
and the loss function computed over the entire set of
predictions.

obj = TY D+ T2 (F0) g
Where (Ui, Y) the training loss determines how the

model fits the training data, Q regularization measures
the complexity of trees, and K is the number of trees.
The proposed CNN-XGBoost architecture consists of
three convolution layers each followed by MaxPooling
layers and an activation function (Relu). following the
last convolutional block, a flattened layer was used to
keep the output of convolution layers into a one-
dimensional vector, the dense layers (fully connected
layers) were climinated, and then the XGBoost was
added classified the extracted features. The structure
of the CNN-XGBoost model was illustrated in Figure
(4.
5.2.3 RF

The ensemble learning classification algorithm
Random Forest (RF) is a potent tool with large training
datasets and numerous input variables. It is frequently
used in situations with small sample sizes, such as the
analysis of gene expression data [33]. The primary
benefit of RF is that it improves forecast accuracy
without increasing computing expenses. The method’s
essence is building multiple trees in randomly selected
subspaces of the feature set. Different subspaces of
trees extend the classification in distinctive ways. Their
general classification can be gradually enhanced [34].
In this work, the performance of the RIF was created
using 100 estimators trained with the CNN model.
The proposed CNN-RF architectute consists of three
convolution layers each followed by MaxPooling
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layers and an activation function (Relu). following the
last convolutional block, a flattened layer was used to
keep the output of convolution layers into a one-
dimensional vector, the dense layers (fully connected

/%9)

layers) were eliminated, and the RF classified the
extracted features. The structure of the CNN-RF
model is illustrated in Figure (5).

Figure (2): Samples of kidney US images: (a) Normal, (b) Stone, (c) Hydronephrosis, (d) Cysts.
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Figure (4): The structure of the CNN-XGBoost model.

5.3 Visualizing Intermediate Activations

(VIA) in CNN

CNN models are often considered black boxes due
to the challenge of understanding their learned
behaviors, VIA was proposed to address this issue
[35]. These visualizations, known as feature maps,
reveal how the network progressively extracts and
refines features from the input image as it passes
through the convolutional layers [36]. The CNN
model was loading and the kidney US image was used
after preprocessing for visualizing the layers of CNN
model activations. Figure (6) shows the process of
VIA for the convolutional layers of CNN models.

6. Results:

The experiments were all run on an ASUS laptop
with a 12th gen Intel Core i7 processor (2.30 GHz) and
64-bit operating system. Python tool version 3.10.7 is
used. The installation of the software program
included: ~ Anaconda  Navigator, Spyder, and
Python.This study uses the CNN model to extract
features from 1260 kidney ultrasound images. The
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kidney US images were classified into four categories:
FC, XGboost and RF. The proposed models are
assessed utilizing a hold-out (80%—20%) train—test
splits, the reason for this split ratio coming from
effectiveness in vatious scenarios, providing a balance
between training and unbiased evaluation. It reduces
the computational cost, especially for large datasets,
and is straightforward to implement. The comparison
results indicate that the accuracy of the classification
was 99% for CNN-RF and 99.6% for CNN-XGBoost.
This shows that the CNN-XGBoost model has a
better performance. Figure (7) shows the accuracy and
loss curves of the CNN model, having a total of 20
epochs. The confusion matrix in Figure (8)
summarizes the model's petrformance on the four
kidney US image classes. The x-axis represents the
predicted class, and the y-axis represents the actual
class.

True Negative (IN), True Positive (TP), False
Negative (FN), and False Positive (FP) values are
calculated using the following formula:
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Accuracy=(TP+TN)/(TP+FP+FN+TN) 2 Table (1): Performance of the CNN model
Precision=TP/(TP+FP) 3 (80%—20% train—test split).
Recal=TP/(TP+FN) .. (4) Class Precision |Recall Kl Support | accuracy
Flscore = ((2 X (Recall X Precision))/(Precision + score
Recall) 5) Stone (0) 100% 100% | 100% 67 97%

The proposed method is assessed for accuracy,
precision, specificity, sensitivity and F1 score to
evaluate the applicability. The performance of CNN
models is shown in Tables 1,2 and Table 3.

To better understand the CNN model's
functionality and learned behaviors, the activations of
it intermediary layers were visualized. To visualize the
activations in an input picture of kidney US, random
filters were derived from the feature maps and
displayed, as Figure (9) illustrates. With the depth of
the layer, the sparsity of activations increased: in the
first convolutional layer, the input picture activated
nearly every channel; in the later layers, many of the
channels were blank, indicating that the pattern these
filters were encoding was not present in the input
image. As a result, CNN was able to grasp the
significant, universal feature of the representations,
which was that features become more abstract as the
layer got deeper. Deeper layer activations conveyed
additional details about the US imaging modalities as
well as nuanced information about the particular input
being viewed.

Normal (1) 94% 94% | 94% 67

Hydronephr |50 | g0, | 9904 | 58
osis (2)

Cysts (3) 93% 95% | 94% 60

Table (2): Performance of the CNN-XGBoost
model (80%—20% train—test split)

Class Precision |Recall Fl Support |Accuracy
score
Stone (0) 100% | 100% |100% 67
Normal (1) 99% 99% | 99% 67
; : 99%
Hydro‘g)l’hros‘s 100% | 100% [100% | 58
Cysts (3) 98% 98% | 98% 60

Table (3): Performance of the CNN-RF model
(80%—20% train—test split).

F1
score

Class Precision [Recall Support [Accuracy

Stone (0) 100% | 100% | 100% | 67
Normal (1) | 99% | 100% | 99% 67
N o

Hydronephr | 500, [ 1000% | 100% | 58 99.6%
osis (2)

Cysts (3) 100% 98% | 99% 60
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Figure (6): The process of the visualization of intermediate layers activation in CNN
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Figure (8): Confusion matrix of (a) CNN, (b) CNN-
XGBOOST, (c) CNN-RF.

Figure (9): VIA for an input US image in the three
convolutional layers of the CNN model: (a) convl,
(b) conv2, (c) conv3.

7. Discussion:

This study developed four models to identify
abnormalities in kidney ultrasound images using real
data from Iraqi healthcare centers. CNN play a
potential role in feature extraction from medical
images, and the dense with SoftMax activation
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function, RF and XGBoost were used to classify (an
unseen dataset of 1260 US images) kidney
abnormalities. Several previous studies utilized deep
learning models to extract features from medical
images, followed by machine learning algorithms for
classifying kidney abnormalities. ResNet100 and
XGboost were used for the binary classification of
4,505 kidney ultrasound images, achieving an accuracy
of 85.6% [18]. A pre-trained, off-the-shelf
convolutional neural network (CNN) was used to
extract features from the kidney US images. These
features were then fed into the SVM classifier to
categorize the kidney images into three classes: normal,
cystic, and containing stones. The model achieved an
accuracy of 91.8% on a performance evaluation. [19].
On three variation datasets, the performance (96.54%
accuracy) was obtained using the pre-trained DNN
models and SVM for classification. The model divides
the kidney's ultrasound pictures into four groups:
normal, cyst, stone, and tumor [20]. In this study,
CNN model was utilized to identify significant texture
features in the images, RF and XGBoost were used for
classification, CNN-RF achieved 99.6%, and the
accuracy of CNN-XGBoost, and CNN was 97%.
Table 5 shows previous methods used to classify
kidney US images in comparison to the proposed
model. The advantage of models in this study was
automatically detect important features in ultrasound
images and classify kidney ultrasound images as cyst,
stone, hydronephrosis, and normal.

Table (4): Previous methods in comparison to the

suggested approach.
Dataset
No. | Authors | Methodology (Ultrasound AMOdel
kidney images) couracy
y g
1 |2o1o, 1y | ResNett00- 4’5013;‘;;*‘565’ 85.6%
> XGBoost . .
classification
Pre-trained . I
2 (2020, [20] | DNN models- m;ag;;, e 96.54%
SVM classification
Pre-trained 1072 images,
3 (2020, [19] CNN- multi- 91.8%
SVM classification
Proposed CNN-RF, 1260 images, |CNN-RF 99.6%,
4 method | CNN-XGboost, multi- CNN-XGboost
CNN classification  [99%, CNN 97%

8. Conclusion:

Kidney diagnostic models were formulated
employing a CNN for feature extraction, dense, RF,
and XGBoost were used to classify the 1260 kidney
US images. Our proposed models achieved better
performance than using the CNN model alone. This is
because they combine feature extraction with a CNN
and classification using Random Forest or XGBoost
algorithms, which focus on enhanced performance
accuracy. These models possess the potential to serve
as an efficacious resolution for the demanding clinical
milieu, especially in Iraq. At the same time, taking into
consideration the limited accessibility of medical
research and diagnostic alternatives. This model was
devised to assist radiologists in the analysis procedure
and enhance the efficiency of patient care by curtailing
the time allocated to interpreting renal images, also this
model improves the accuracy of diagnosis systems.
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