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Abstract 

Kidney disease is a global health concern, often leading to kidney failure 

and impaired function. Artificial intelligence and deep learning have been 

extensively researched, with numerous proposed models and methods to 

improve kidney disease diagnosis. This work aims to enhance the efficiency 

and accuracy of the diagnostic system for kidney disease by using Deep 

Learning, thereby contributing to effective healthcare delivery. This work 

proposed three models: CNN, CNN-XGBoost and CNN-RF to extract 

features and classify kidney Ultrasound images into four categories: three 

abnormal cases (stones, hydronephrosis, and cysts) and one normal case. The 

models were tested on a real dataset of 1260 kidney ultrasound images (from 

1000 patients) collected from the Lithotripsy Centre in Iraq. CNN models are 

often viewed as black boxes due to the challenge of understanding their 

learned behaviors, Visualizing Intermediate Activations (VIA) was used to 

address this issue. The proposed framework was assessed based on precision, 

recall, F1-score, and accuracy. CNN-RF is the most accurate model, with an 

accuracy of 99.6%. This study can potentially assist radiologists in high-

volume medical facilities and enhance the accuracy of the diagnostic system 

for kidney disease. 

Keywords: CNN, Deep Learning, Feature Extraction, Kidney Diseases, RF, 

Ultrasound Images, Visualization.   

 الكشف الآلي وتصور صور الكلى المحلية باس تخدام نماذج الذكاء الاصطناعي  
 ، هاني عماشة هديل قاسم وادي الجبوري ،صالح حوراء س تار 

 الخلاصة: 

جراء  لى الفشل الكلوي وضعف وظائف الكلى.  لقد تم ا  العديد  أ مراض الكلى هي مشكلة صحية عالمية تؤدي غالبًا ا 

حول الذكاء الاصطناعي والتعلم العميق، مع اقتراح العديد من النماذج وال ساليب لتحسين تشخيص أ مراض   من البحوث

لى تحسين كفاءة ودقة نظام التشخيص ل مراض الكلى باس تخدام التعلم العميق، مما يساهم في  الكلى. يهدف هذا العمل ا 

نما ثلاثة  العمل  هذا  اقترح  الفعالة.  الصحية  الرعاية  ش بكة  تقديم  وش بكة  CNNذج:   ،CNN-XGBoost وش بكة  ،

CNN-RF  :لى أ ربع فئات ثلاث منها حالات غير   لاس تخراج الخصائص وتصنيف صور الموجات فوق الصوتية للكلى ا 

الخراجات( وحالة طبيعية واحدة. تم اختبار النماذج على مجموعة بيانات حقيقية مكونة   الكلية،م  ختض  صوات،الحطبيعية )

مريض( تم جمعها من مركز تفتيت الحصى في العراق. غالبا   1000صورة الموجات فوق الصوتية للكلى )من    1260من  

لى نماذج ال على أ نها صناديق سوداء بسبب التحدي المتمثل في فهم سلوكياتهم المكتس بة، تم اس تخدام    CNNما ينظر ا 

( لغرض معالجة هذه المشكلة. تم تقييم النماذج المقترحة  Visualizing Intermediateتصور عمليات التنش يط الوس يطة )

النموذج ال كثر دقة حيث تبلغ دقته    CNN-RF(. يعد نموذج  precision, recall, F1-score, accuracy)  بناء على

الدراسة  99.6 هذه  تساعد  أ ن  يمكن  التشخيص   أ خصائي٪.  نظام  دقة  وتحسين  الكثافة  عالية  الطبية  المرافق  في  ال شعة 

 ل مراض الكلى. 

1. Introduction  
Renal diseases involve gradual loss of renal 

function in filtering metabolic wastes and blood fluids, 

kidney diseases include kinematic damage, kidney 
cysts, kidney stones, hydronephrosis, and other kidney 
infections [1]. Accounting shows that kidney diseases 
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caused 1.34 and 1.36 million deaths in the years 2021 
and 2022, according to the World Health 
Organization. Kidney diseases were Iraq's main cause 
of death in 2022, with 26,000 fatalities and 25,000 
deaths in 2021. Kidney diseases include stones that are 
concretions that materialize in the presence of elevated 
concentrations of calcium, oxalate, cystine, or 
phosphate and insufficient fluid [2]. Accumulation of 
crystals in the kidney regions, known as 
nephrolithiasis, leads to renal failure in advanced stages 
[3]. Cystic renal disease is a pathological state 
distinguished by the existence of multiple fluid-filled 
cysts within the renal tissue. These cysts exert pressure 
on the nephrons responsible for regulating kidney 
function, resulting in renal failure [4]. Obstructive 
hydronephrosis is the term used to describe 
anatomical and functional problems with the kidneys 
brought on by obstructions in the urine's flow, which 
makes it difficult to urinate [5]. Hematepuria and the 

presence of hydronephrosis on ultrasound imaging 
can be valuable indicators of renal colic. [6]. 
Ultrasound imaging, known as sonography, high-
frequency sound waves are employed to diagnose soft 
tissues like muscles and internal organs, including 
kidney diagnosis [7], [8]. Renal ultrasound (US) is a 
preferred imaging modality because of a safe, non-
invasive, and cost-effective test, US is a useful tool for 
making medical decisions [9]. 

Artificial intelligence (AI) and DL play crucial roles 
in healthcare, particularly in diagnosing various 
diseases [10], [11]. AI is a branch of computer science  
that can be applied to design software models that can 
imitate human tasks [12], [13]. Deep-learning 
technology is a branch of machine learning that uses 
multiple artificial neurons to identify intricate features 
in input datasets, addressing complex real-world issues 
[14], [15]. 

 

 
Figure (1):  Processing diagram for the suggested methods. 

 

AI and deep learning for better-diagnosing kidney 
diseases have been widely researched with many 
proposed models and methods [16], [17]. In 2019 
ResNet-100 and XGboost were used for the binary 
classification of 4,505 kidney ultrasound images, 
achieving an accuracy of 85.6% [18]. Kokil and 
Sudharson [19] proposed a two-stage approach for 
classifying kidney abnormalities in ultrasound images. 
first, a pre-trained convolutional neural network 
(CNN) was utilized to extract relevant features from 
the images. Then, SVM was employed to classify the 
extracted features into three categories: normal, cystic, 
and stoned. In 2020, Sudharson and Kokil developed 
an approach ensemble ResNet-101, Shuffle Net, and 
MobileNet-v2 models to extract features (from 4940 
kidney US images), an SVM employed to classify the 
images into four classes (normal, cyst, stone, and 
tumour). The method achieved an accuracy of 96.54% 
[20]. In 2023 Raja Sankari Vm et al. suggested a custom 
CNN model to classify 1000 US images into binary 
classes, with a classification accuracy of 95% [21]. 

In this work, the CNN model was employed to 
extract features, fully connected layers, RF and 

XGboost algorithms were used to classify kidney 
ultrasound images into four classes (normal, stone, 
hydronephrosis, and cysts), the Visualizing 
Intermediate Activations (VIA) was used to 
understand the CNN layers. The models were trained 
and tested on ultrasound images of kidneys collected 
from the Lithotripsy Centre in Iraq. The major 
contributions of this work are:  

A computer-aided diagnosis system based on a DL 
model to enhance the accuracy of kidney disease 
classification from normal.  

A CNN extracted features from the ultrasound 
images. These features were fed into fully connected 
layers, XGBoost and Random Forest algorithms for 
multiclassification tasks. 

 

2. Methodology 

The process of the proposed models is illustrated 
in Figure 1. The preprocessing and data collecting are 
the two primary aspects of this section. In the next 
paragraphs, the details of these sections are presented. 

 

3. The Dataset Collection 
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For this research, real kidney ultrasound datasets 
were obtained from the Lithotripsy Center at Al-
Diwaniyah General Teaching Hospital, Iraq. The 
images were acquired using a Philips HD11 XE 
ultrasound system, which produces images in DICOM 
format with a resolution of 800x600 pixels. The dataset 
of images was diagnosed by three urologists and one 
radiologist and categorized into four categories: 
normal, cyst, hydronephrosis, and stone. Obtained 
four cases a total of 1260 US images from 1000 
patients (cyst, stone, hydronephrosis, and normal), 315 
US images were collected for each class. Figure (2) 
displays three classes of kidney disease and the normal 
case and presents the region of interest (ROI). 
 

4. Preprocessing 
The preparation of data is crucial in medical 

imaging. Pre-processing is frequently necessary to do 
significant data analysis. In this work, pre-processing is 
done in four steps: normalization, scaling, cropping, 
and the format of the image. Image format, the images 
were preprocessed to prepare them for the feature 
extraction step. First of all, the images that were 
collected, were converted from DICOM to BITMAP. 
After that, the images are organized and separated 
randomly into 80% for training (1008 images) and 20% 
for testing (252 images). 

In the image resizing the size of the images was 
changed to a new size (224 x 224). It is preferable to 
resize all images to a uniform size, and standard image 
dimensions for CNN training often fall between 64 × 
64 and 256 × 256 [22] [23]. Then Normalize the values 
of pixels from a resolution range of (0- 255) to a range 
of (0 - 1) to obtain neural networks that operate with 
small input values [24]. It is recommended for neural 
network-based classification methods [25]. 

 

5. The Proposed Models: 
5.1 Feature Extractions 

Deep learning involves feature extraction, 
identifying meaningful patterns from pre-processed 
data to enhance model performance in tasks like 
classification, object detection, and image 
segmentation [26]. There are several techniques for 
that purpose deep CNNs are the primary method for 
feature extraction in AI, employing convolutional 
layers, pooling layers, and activation functions to 
extract low-level features, reduce spatial resolution, 
and learn complex relationships [27]. This work used 
CNN model to extract features from kidney US 
images. 
5.1.1 CNN 

CNN is a prominent algorithm in deep learning 
methods and has been used in various applications 
such as image processing, classification, and 
enhancement tasks [28][29]. The proposed CNN 
architecture consists of three convolution layers each 
followed by MaxPooling layers and an activation 
function (Relu). Following the last convolutional 
block, a flattened layer was used to keep the output of 
convolution layers into a one-dimensional vector, the 
dense layer's (fully connected layers) classify the 
images into four classes, The CNN structure with 
dense layers is illustrated in Figure (3). 

5.2 Classification  
The computational complexity of the model is 

decreased by the image classification algorithms. 
Classifying images from numerous modalities to 
discriminate between different disease types of 
biomarkers is the ultimate goal of medical imaging 
analysis [30]. In this work, extracted features were fed 
into fully connected layers or to machine learning 
algorithms: FC, XGBoost and RF to classify kidney US 
images. The models predict four classes with the 
highest probability based on the learned features. 
5.2.1 Fully Connected Layer 

Classification layers mainly include the Fully 
connected (FC) layers also referred to as a dense layer 
[31]. The proposed CNN architecture was used to 
extract features, dense layers (fully connected layers) 
with SoftMax activation function classify the images 
into four classes, The CNN structure with dense layers 

is illustrated in figure (3). 
5.2.2 XGBoost 

Extreme Gradient Boosting (XGboost) is a 
decision tree-boosting model developed by Chen et al. 
[32]. XGBoost can handle continuous features by 
dividing them into buckets during training. It 
considers the distribution of data points within each 
bucket to find optimal split points for decision trees. 
Each iteration of XGBoost adds a new decision tree 
to the ensemble, focusing on improving the model's 
performance based on a specific loss function. 
XGBoost objective function is the sum of the 
regularization function for every prediction (K trees) 
and the loss function computed over the entire set of 
predictions. 

    …(1) 

Where (𝒴𝑖, �̂�) the training loss determines how the 

model fits the training data,   regularization measures 
the complexity of trees, and K is the number of trees. 
The proposed CNN-XGBoost architecture consists of 
three convolution layers each followed by MaxPooling 
layers and an activation function (Relu). following the 
last convolutional block, a flattened layer was used to 
keep the output of convolution layers into a one-
dimensional vector, the dense layers (fully connected 
layers) were eliminated, and then the XGBoost was 
added classified the extracted features. The structure 
of the CNN-XGBoost model was illustrated in Figure 
(4).  

5.2.3 RF 
The ensemble learning classification algorithm 

Random Forest (RF) is a potent tool with large training 
datasets and numerous input variables. It is frequently 
used in situations with small sample sizes, such as the 
analysis of gene expression data [33]. The primary 
benefit of RF is that it improves forecast accuracy 
without increasing computing expenses. The method’s 
essence is building multiple trees in randomly selected  
subspaces of the feature set. Different subspaces of 
trees extend the classification in distinctive ways. Their 
general classification can be gradually enhanced [34]. 
In this work, the performance of the RF was created 
using 100 estimators trained with the CNN model. 
The proposed CNN-RF architecture consists of three 
convolution layers each followed by MaxPooling 
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layers and an activation function (Relu). following the 
last convolutional block, a flattened layer was used to 
keep the output of convolution layers into a one-
dimensional vector, the dense layers (fully connected 

layers) were eliminated, and the RF classified the 
extracted features. The structure of the CNN-RF 
model is illustrated in Figure (5). 

 
Figure (2): Samples of kidney US images: (a) Normal, (b) Stone, (c) Hydronephrosis, (d) Cysts. 

 

 
Figure (3): The structure of the CNN model 

 
Figure (4): The structure of the CNN-XGBoost model. 

 

5.3 Visualizing Intermediate Activations 
(VIA) in CNN 

CNN models are often considered black boxes due 
to the challenge of understanding their learned 
behaviors, VIA was proposed to address this issue 
[35]. These visualizations, known as feature maps, 
reveal how the network progressively extracts and 
refines features from the input image as it passes 
through the convolutional layers [36]. The CNN 
model was loading and the kidney US image was used 
after preprocessing for visualizing the layers of CNN 
model activations. Figure (6) shows the process of 
VIA for the convolutional layers of CNN models. 

 

6. Results:  
The experiments were all run on an ASUS laptop 

with a 12th gen Intel Core i7 processor (2.30 GHz) and 
64-bit operating system. Python tool version 3.10.7 is 
used. The installation of the software program 
included: Anaconda Navigator, Spyder, and 
Python.This study uses the CNN model to extract 
features from 1260 kidney ultrasound images. The 

kidney US images were classified into four categories: 
FC, XGboost and RF. The proposed models are 

assessed utilizing a hold-out (80%–20%) train–test 
splits, the reason for this split ratio coming from 
effectiveness in various scenarios, providing a balance 
between training and unbiased evaluation. It reduces 
the computational cost, especially for large datasets, 
and is straightforward to implement. The comparison 
results indicate that the accuracy of the classification 
was 99% for CNN-RF and 99.6% for CNN-XGBoost. 
This shows that the CNN-XGBoost model has a 
better performance. Figure (7)  shows the accuracy and 
loss curves of the CNN model, having a total of 20 

epochs. The confusion matrix in Figure (8) 
summarizes the model's performance on the four 
kidney US image classes. The x-axis represents the 
predicted class, and the y-axis represents the actual 
class. 

True Negative (TN), True Positive (TP), False 
Negative (FN), and False Positive (FP) values are 
calculated using the following formula: 
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Accuracy=(TP+TN)/(TP+FP+FN+TN)         (2) 
Precision=TP/(TP+FP)                    (3) 

Recall=TP/(TP+FN)                    (4) 
F1score = ((2 × (Recall × Precision))/(Precision + 
Recall)                                                              (5) 

The proposed method is assessed for accuracy, 
precision, specificity, sensitivity and F1 score to 
evaluate the applicability. The performance of CNN 
models is shown in Tables 1,2 and Table 3.  

To better understand the CNN model's 
functionality and learned behaviors, the activations of 
it intermediary layers were visualized. To visualize the 
activations in an input picture of kidney US, random 
filters were derived from the feature maps and 
displayed, as Figure (9) illustrates. With the depth of 
the layer, the sparsity of activations increased: in the 
first convolutional layer, the input picture activated 
nearly every channel; in the later layers, many of the 
channels were blank, indicating that the pattern these 
filters were encoding was not present in the input 
image. As a result, CNN was able to grasp the 
significant, universal feature of the representations, 
which was that features become more abstract as the 
layer got deeper. Deeper layer activations conveyed 
additional details about the US imaging modalities as 
well as nuanced information about the particular input 
being viewed. 

 

Table (1): Performance of the CNN model 
(80%–20% train–test split). 

Class Precision Recall 
F1 

score 
Support accuracy 

Stone (0) 100% 100% 100% 67 97% 

Normal (1) 94% 94% 94% 67 

 
Hydronephr

osis (2) 
100% 98% 99% 58 

Cysts (3) 93% 95% 94% 60 

Table (2): Performance of the CNN-XGBoost 
model (80%–20% train–test split) 

Class Precision Recall 
F1 

score 
Support Accuracy 

Stone (0) 100% 100% 100% 67 

99% 

Normal (1) 99% 99% 99% 67 

Hydronephrosis 
(2) 

100% 100% 100% 58 

Cysts (3) 98% 98% 98% 60 

 
Table (3): Performance of the CNN-RF model 

(80%–20% train–test split). 

Class Precision Recall 
F1 

score 
Support Accuracy 

Stone (0) 100% 100% 100% 67 

99.6% 

Normal (1) 99% 100% 99% 67 

Hydronephr
osis (2) 

100% 100% 100% 58 

Cysts (3) 100% 98% 99% 60 

 
 

 
Figure (5): The structure of the CNN-RF model. 

 

 
Figure (6): The process of the visualization of intermediate layers activation in CNN 
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Figure (7): Illustrates the accuracy and loss curve for 20 epochs of the CNN.  

 

 
Figure (8): Confusion matrix of (a) CNN, (b) CNN- 

XGBOOST, (c) CNN-RF. 

 

Figure (9): VIA for an input US image in the three 
convolutional layers of the CNN model: (a) conv1, 

(b) conv2, (c) conv3. 

7. Discussion: 
This study developed four models to identify 

abnormalities in kidney ultrasound images using real 
data from Iraqi healthcare centers. CNN play a 
potential role in feature extraction from medical 
images, and the dense with SoftMax activation 
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function, RF and XGBoost were used to classify (an 
unseen dataset of 1260 US images) kidney 
abnormalities. Several previous studies utilized deep 
learning models to extract features from medical 
images, followed by machine learning algorithms for 
classifying kidney abnormalities. ResNet100 and 
XGboost were used for the binary classification of 
4,505 kidney ultrasound images, achieving an accuracy 
of 85.6% [18]. A pre-trained, off-the-shelf 
convolutional neural network (CNN) was used to 
extract features from the kidney US images. These 
features were then fed into the SVM classifier to 
categorize the kidney images into three classes: normal, 
cystic, and containing stones. The model achieved an 
accuracy of 91.8% on a performance evaluation. [19]. 
On three variation datasets, the performance (96.54% 
accuracy) was obtained using the pre-trained DNN 
models and SVM for classification. The model divides 
the kidney's ultrasound pictures into four groups: 
normal, cyst, stone, and tumor [20]. In this study, 
CNN model was utilized to identify significant texture 
features in the images, RF and XGBoost were used for 
classification, CNN-RF achieved 99.6%, and the 
accuracy of CNN-XGBoost, and CNN was 97%. 
Table 5 shows previous methods used to classify 
kidney US images in comparison to the proposed 
model. The advantage of models in this study was 
automatically detect important features in ultrasound 
images and classify kidney ultrasound images as cyst, 
stone, hydronephrosis, and normal. 

 
Table (4): Previous methods in comparison to the 

suggested approach. 

No. Authors Methodology 
Dataset 

(Ultrasound 
kidney images) 

Model 
Accuracy 

1 2019, [18] 
ResNet100-
XGBoost 

4,505 images, 
binary 

classification 

85.6% 
 

2 2020, [20] 
Pre-trained 

DNN models- 
SVM 

images, multi-
classification 

96.54% 

3 2020, [19] 
Pre-trained 

CNN- 
SVM 

1072 images, 
multi-

classification 
91.8% 

4 
Proposed 
method 

 

CNN-RF, 
CNN-XGboost, 

CNN 

1260 images, 
multi-

classification 

CNN-RF 99.6%, 
CNN-XGboost 
99%, CNN 97% 

 

8. Conclusion:  
Kidney diagnostic models were formulated 

employing a CNN for feature extraction, dense, RF, 
and XGBoost were used to classify the 1260 kidney 
US images. Our proposed models achieved better 
performance than using the CNN model alone. This is 
because they combine feature extraction with a CNN 
and classification using Random Forest or XGBoost 
algorithms, which focus on enhanced performance 
accuracy. These models possess the potential to serve 
as an efficacious resolution for the demanding clinical 
milieu, especially in Iraq. At the same time, taking into 
consideration the limited accessibility of medical 
research and diagnostic alternatives. This model was 
devised to assist radiologists in the analysis procedure 
and enhance the efficiency of patient care by curtailing 
the time allocated to interpreting renal images, also this 
model improves the accuracy of diagnosis systems. 
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