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Abstract

Recently, three-dimensional models 3DM in the prosthetics field
gained popularity, especially in the context of residual limb shape creation
resulting from collecting medical images in Digital Imaging and
Communications in Medicine DICOM format from a magnetic resonance
imaging MRI after image processing accurately. In this study, a three-
dimensional model of the residual limb for a patient with transtibial
amputation was realized with the integration of artificial intelligence and a
computer vision approach demonstrating the benefits of Al segmentation
tools and artificial algorithms to generate higher accuracy three-dimensional
model before prosthetic socket design or in case of comparison the 3D
model generated from MRI with another 3D model generated from another
technique, where a residual limb of a 23 years old male patient with
amputation in the left leg wearing a prosthetic socket liner, and having 62
kg weight, 168 cm height, with high activity level. The patient was scanned
using GE Medical Systems, 1,5 Tesla Signa Excite. MRI images in DICOM
format were read to retrieve essential metadata such as pixel spacing and
slice thickness. These images were processed to obtain a model that reflects
the real shape of the residual limb using a specific algorithm, and the 3D
model was extracted using Al segmentation tools. The obtained 3D model
result with high resolution proves the potential of the artificial intelligence
approach with deep learning to reconstruct 3D models concluding that Al
has an instrumental role in medical image analysis, particularly in the areas
of organ and tissue classification and segmentation., thus generating
automatic and repetitive a 3D model.

Keywords: Artificial Intelligence, Deep Learning, Image Processing, Magnetic
Resonance Imaging (MRI).
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1. Introduction

In the prosthetic field, a discernible trend toward
individualized patient care has emerged, notably in
scenarios involving getting residual limb morphology.
When addressing imaging modalities such as magnetic
resonance imaging (MRI), and computer tomography
(CT) scans, the delicate balance between ensuring
patient safety and getting improved images to avoid re-
scanning again stands as a pivotal consideration.

Prosthetics specialists benefit from the integration
of image-guided interventions as they are crucial either
in finite element analysis for determining loading
conditions of segmented models derived from medical
imaging [1], or in the study of the interference between
the skin of the stump and the inner surface of the
socket due to differences in geometric shapes, which
is also known as overclosure [2]. Utilizing imaging
modalities such as (CT) or (MRI) scans facilitates the
acquisition of the internal and external surface and the
bones of the residual limb [3], [4], [5] to reconstruct a
three-dimensional (3D) model.  Numerous
methodologies are available for medical image
segmentation, including traditional techniques based
on regions and edges, as well as deep learning-driven
approaches. Traditional methods face challenges
stemming from non-uniform grayscale characteristics,
unique individual differences, visual anomalies, and
interference  like  image  imperfections, and
disturbances, furthermore, the time-consuming nature
of 3D model creation, which demands the
involvement of trained engineers, poses additional
hurdles.

The cornerstone for crafting these 3D models
hinges on image acquisition practices. Enhanced MRI
scans have been recognized as the most dependable
method for reconstructing the human body's muscles,
tendons, and external morphology [6], [7]. Although in
the past, the three-dimensional models were created
automatically using specific radiological software,
contemporary advancements have ushered in
dedicated technologies enabling the development of
highly precise and accurate 3D virtual reconstructions
using artificial intelligence, utilizing professional
software that can improve precision and ensure the
integrity of the final model [8]. To overcome these
challenges, the integration of artificial intelligence (AI)
algorithms emerges as a pivotal solution, where Al,
chatacterized by machines' ability to execute tasks and
tackle issues without explicit programming, offers
substantial promise in overcoming limitations
associated with human factors [9]. Deep learning
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models have demonstrated remarkable efficacy in
image segmentation, enhancing disease diagnosis
precision and reducing extraneous computations.
However, a recent systematic review and meta-analysis
underscored that the specialty's comprehensive data
accessibility through DICOM formats positions it
uniquely for Al integration [10,11] to produce
predictive models [12], potentially leading the way for
Al advancements in other interventional fields such as
diagnostic medical imaging [13,14] and analyzing
patient data [15]. In medical technologies, Bitkina et al.
identify the current state of artificial intelligence in
medicine and prospects for future use [16]. In the
prosthetics field, Deep Learning Models were used to
Predict Prosthetic Ankle Torque [17], 2 machine-based
model to detect the nominal alighment in transfemoral
prosthetics [18], fuzzy logic-based modelling to
forecast the impact of various surface reconstruction
parameters on surface deviation response post
transtibial prosthesis socket scanning [19]. In this
study, a case was illustrated where artificial intelligence
algorithms were employed to achieve a full
reconstruction of the residual limb 3D model of a
transtibial amputee, highlighting the accuracy and
precision of the resulting 3D model, utilizing DICOM
images from an MRI scan.

2. Materials and Methods

In this study, MRI images for a residual limb of a
patient with transtibial amputation in the left leg (the
age:23years, the weight: 62 kg, the height: 168 cm, sex:
male with high activity level, amputated due to car
accident, the level of the amputation is medium and
wearing a prosthetic socket liner (ALPS Cushion
Liner, HD Gel) with 6mm thickness (SPFR (HD)26-
6), were utilized and taken by the GE Medical Systems,
1,5 Tesla Signa Excite, in Baghdad Scan Medical
Center By Dr. A.G. Iraq. The test parameters values
were set as follows: the series description T'1 3D Axial,
FOV of 23x23 cm, bitmap dimension 256x256 pixels
obtained through repetition time (RT) = 5.052 (ms),
echo time (ET)= 2.42 (ms) sequence, scan time 4
(min), slice thickness 3.0 (mm), distance between
images 0.6 (mm). Images were acquired with a flexible
phased-array surface coil wrapped around the limb.
When a body segment is scanned, the MRI equipment
captures images in the form of slices depending on the
machine settings and the detail requited. This single
slice of information is filed in Digital Imaging and
Communications in Medicine (DICOM) format. All
DICOM data were exported to the application for
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processing and displaying medical images (RadiAnt
DICOM Viewer 2023.1, Poznan, Poland). MRI slices
were affected by noise due to the artifact caused by the
little movement of the leg while taking the scan,
causing a loss in detail quality, which requires
preprocessing philtre to enhance clarity and definition.
The 3D reconstruction was done followed by a
volumetric reconstruction and a wrap, and then saved
as stereolithography (STL) files (Fig. 1). It should also
be noted that some problems occurred using the
flexible coil device, whose integration with the MRI
apparatus used for lower limb scanning was difficult;
the magnetic core has a diameter of only @ = 30 cm
and requires horizontal leg positioning, while the
system needs a little more volume to be fully
performing to cover all the residual limb length.

3. Image Processing

After image acquisition, 244 images with 141 KB
for each image were extracted, 14 were excluded due
to the repetition and the included no feature, and 16
images were unable to be selected when imported into
the 3D slicer 5.6.1 software (https://www. slicer.org/,
accessed on 7 June 2023) Because of image noise and
the difficulty of detecting the boundary of the end of
the residual limb (Fig. 2). In the 3D slicer, the
interested area of the images was enlarged using (Crop
Volume for the region of interest ROI) (Fig. 3), the
resulting images were saved in a DICOM format at
130 KB, and the noises of the images were reduced.
The specific image processing to create a complete
model for the residual limb is done by utilizing the
pixel data information that is kept in the DICOM
image header, which includes image resolution, slice
instance number, slice thickness, etc. by new deep-
learning methods for suppressing artifacts and
improving overall quality. The data portion of the file
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contains pixel intensities arranged in rows, enabling
accurate pixel placement after image processing with
bitmap images matching the resolution and color
details of the DICOM image. The rest of the image
processing was completed using MATLAB algorithms
and artificial intelligence (AI) tools. The overall
fundamentals of digital image processing are shown in
(Fig. 4) with 7 steps that are used for this study,
including image reading, segmentation, processing,
visualization, and mesh generation for further analysis
or visualization. The process of image reading, and
metadata extraction involves reading a DICOM image
to retrieve essential metadata such as pixel spacing and
slice thickness.

Subsequently, image segmentation techniques are
employed, including (Otsu's thresholding) method.
utilizing the (graythresh) function to create a binary
image, followed by the conversion of the grayscale
image to a binary format using the (imbinarize)
function based on the determined threshold.

Further refinement is achieved through Canny
edge detection applied to detect edges within binary
images. The resultant processed images are stored in a
3D logical array, which is then converted to uint8
format for the purpose of saving the modified images.
These modified images are then saved as DICOM
files, ensuring that the updated metadata is included.
For visualization purposes, the processed images are
converted to single precision and visualized using the
Volume Viewer tool. Additionally, surface mesh
generation is conducted by creating an iso-surface
from the processed images, adjusting vertex
coordinates using metadata, and generating a
triangulation object for the surface mesh. Following
this, the surface mesh is plotted and displayed with
specific visualization settings, and the faces and
vertices of the mesh are saved as an STL file to
facilitate their utilization in 3D modelling applications.

Supracondyla
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Figure (1): The 3D model has destruction from the end of the stump due to the coil size and the
existence of the artifact.
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Figure (3): Using the Crop Volume function in 3D slicer to specify the interested area.
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Figure (4): The fundamental steps of digital image processing.

4. 3D Reconstruction With Al to streamline processes in medical applications like

To achieve a three-dimensional model with diagnostic imaging and surgical planning. The role of
increased precision, specifically tailored to the patient artificial intelligence in this study is primarily focused
consisting of all residual limb structures including the on enhancing the efficiency and accuracy of medical
end of the stump part, Al including deep learning was image processing for DICOM images by
used based on the operative workflow demonstrated automatically extracting and analysing metadata from
in (Fig. 5) that consists of five consecutive steps: DICOM files and enabling efficient data
Automated Metadata Extraction, Image Segmentation, interpretation. Al algorithms aid in image
Enhanced Image Processing, Intelligent Metadata segmentation by automatically identifying regions of
Modification, FEfficient Visualization and Mesh interest, such as pixel spacing and slice thickness,
Generation. crucial for medical image analysis. Using Al-powered

By harnessing the capabilities of deep neural techniques like thresholding and edge detection
networks, the anatomical structures in medical improves image processing accuracy and speed,
images can be can now accurately classified and contributing to more precise medical image analysis.
outlined, paving the way for automated 3D model Al facilitates the intelligent modification of metadata
reconstruction. This breakthrough has the potential for new images, ensuring that essential information is

correctly updated for further analysis and sharing.

Automated
Metadata

Intelligent Efficient
Metadata Visualization and
Modification Mesh Generation

Image Enhanced Image
Segmentation Processing

Extraction

Figure (5): The fundamental steps of digital image processing.

Al streamlines the visualization process and were  meticulously  segmented  through the
surface mesh generation by optimizing image data employment of the 3D Slicer platform, leveraging a
conversion and adjustment based on extracted combination of automated and manual segmentation
metadata, enhancing the overall efficiency and methodologies. These techniques harness the power
accuracy of 3D model creation. The present case of computer vision algorithms predicated on
study seeks to explore the synetgistic integration of grayscale intensity values to delineate the anatomical
cutting-edge computer vision techniques and state- structutes of interest.
of-the-art deep learning segmentation algorithms. As While the automated segmentation processes
previously  elucidated, the ambiguous  slices yield robust and consistent results, a degree of
encompassing the distal aspect of the residual limb manual refinement is often necessary to further
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refine the contours of the anatomical structures to
eliminate any erroneous "noise pixels" that may have
been inadvertently included. By employing this
approach, which capitalizes on the strengths of both
automated and manual segmentation techniques, it
was able to generate high-fidelity segmentation
results.

5. Results

The Segmentation using 3D Slicer is an automatic
tool based on Al These cutting-edge algorithms are
designed to accept any series of MRI scans as input
and subsequently undertake the automated
segmentation of a diverse array of anatomical
structures of interest. The resulting 3D model after
the segmentation of each one of the unclear slices in
the end stump contains the end part of the residual
limb but it is affected by noise due to the artifact
caused by the little movement of the leg while taking
the scan (the black circle) (Fig. 6). After 3D model
construction, comprehensive images were fre-
processed using a proprietary algorithm. This
algorithm meticulously re-processed each image,
ensuring optimal quality and format compatibility.
The processed images were then saved in the Bitmap
(BMP) file format, a widely recognized standard for
high-fidelity image representation. The new surface
reconstruction that displays using code is more
accurate and the details of the end of the stump can
be observed (Fig. 7, a). The resulting model was
saved in STL file format and loaded to software
program Geomagic® Freeform® (333 Three D
Systems, Circle Rock Hill, SC 29730, USA) to create
a clay with no voids (Fig. 7, b), then the model loaded
to Meshmixer (Autodesk, Inc., San Rafael, CA, USA)
software for additional modifications including
deleting non-interested areas, mesh, smoothing, and
using the inspector tool to finish the modification
process. (Fig. 7, ¢) demonstrated the final 3D model

A%»

with a high accuracy and features that are needed to
complete the shape of the residual limb.

6. Discussion

The creation of three-dimensional models with
high accuracy is mainly in demand, especially with
regard to the application of the medical field
especially in prosthetics when dealing with patients
with various amputations where the images of the
residual limb have been obtained through medical
imaging techniques such as magnetic resonance
imaging MRI, Where authorized programs for
medical application are used that are able to obtain
hyper-accurate models.

However, this process is often burdened by
numerous time-consuming and repetitive tasks, which
can lead to diminished precision and a heightened risk
of systemic errors. In this context, the advent of
artificial intelligence (AI) plays
potentially offering engineers a
solution to these challenges.

The application of Al techniques alone has not
allowed for generating 3D models suitable for
prosthetic applications, particulatly in achieving
accurate residual limb shapes. This limitation
necessitated  the incorporation of additional
algorithms, coupled with expertise in design software
and meticulous adjustments, to meet minimal clinical
requirements. The integration of AI with computer
vision algorithms, however, shows great promise. It
accelerates the modelling process and yields results
comparable to the gold standard manual approaches
while reducing dependence on operator intervention.
In the future, further improvement of deep learning
algorithms with multiple datasets training them to
recognize more details will allow us to achieve optimal
results, meeting clinical requirements and realizing
detailed 3D reconstructions using artificial intelligence
only.

a pivotal role,
transformative

Figure (6): Artificial intelligence segmentation of the slices that include the end part of the residual limb was
repeated to include all the missing parts in that area.
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(@)

Figure (7): (a) The output model from the provided code that includes the pre-processing for all MRI slices saved in
STL format. (b) The 3D model after being loaded into Freeform software. (c) the 3D model after additional
modifications in Meshmixer.

Moreover, deep learning has the potential to be
integrated into all stages of the modelling process,
ensuring a consistent, repeatable quality standard that
is independent of operator input. Nevertheless, it
remains imperative that Al-generated results are
verified by expert users to confirm their reliability and
accuracy.

7. Conclusion

The integration of artificial intelligence (Al) with
medical imaging has revolutionized the field of
prosthetics, particularly in the creation of high-fidelity
3D models of residual limbs. The study presented
herein demonstrates the potential of Al algorithms in
enhancing the accuracy and efficiency of image
segmentation and 3D reconstruction processes, as
exemplified by the case of a transtibial amputee. The
use of Al-driven tools, such as the Segmentation by
3D Slicer with an additional algorithm supported by
Al has shown promising results in automating the
segmentation of MRI scans, thereby reducing the
time-consuming manual tasks associated with
traditional methods.

Looking ahead, the continuous refinement of deep
learning algorithms and their integration with
computer vision techniques hold the promise of fully
automated, high-quality 3D model creation, which
could significantly impact the field of prosthetics. This
advancement could lead to better fitting prosthetic
devices, improved patient outcomes, and a reduction
in systemic errors associated with manual
segmentation processes.

In conclusion, the synergy between Al and medical
imaging represents a significant stride toward
personalized patient care in prosthetics. As the
technology matures, it is poised to become an
indispensable tool in the hands of prosthetics
specialists, enabling them to deliver more precise and
efficient care to their patients. The future of Al in
prosthetics is bright, and its full potential is yet to be
realized.
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