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Abstract 

Recently, three-dimensional models 3DM in the prosthetics field 

gained popularity, especially in the context of residual limb shape creation 

resulting from collecting medical images in Digital Imaging and 

Communications in Medicine DICOM format from a magnetic resonance 

imaging MRI after image processing accurately. In this study, a three-

dimensional model of the residual limb for a patient with transtibial 

amputation was realized with the integration of artificial intelligence and a 

computer vision approach demonstrating the benefits of AI segmentation 

tools and artificial algorithms to generate higher accuracy three-dimensional 

model before prosthetic socket design or in case of comparison the 3D 

model generated from MRI with another 3D model generated from another 

technique, where a residual limb of a 23 years old male patient with 

amputation in the left leg wearing a prosthetic socket liner, and having 62 

kg weight, 168 cm height, with high activity level. The patient was scanned 

using GE Medical Systems, 1,5 Tesla Signa Excite.  MRI images in DICOM 

format were read to retrieve essential metadata such as pixel spacing and 

slice thickness. These images were processed to obtain a model that reflects 

the real shape of the residual limb using a specific algorithm, and the 3D 

model was extracted using AI segmentation tools. The obtained 3D model 

result with high resolution proves the potential of the artificial intelligence 

approach with deep learning to reconstruct 3D models concluding that AI 

has an instrumental role in medical image analysis, particularly in the areas 

of organ and tissue classification and segmentation., thus generating 

automatic and repetitive a 3D model. 

Keywords: Artificial Intelligence, Deep Learning, Image Processing, Magnetic 

Resonance Imaging (MRI). 

تحويل رعاية بتر تحت الركبة في الرعاية الصحية الدقة القائمة على الذكاء الاصطناعي:  

 الحديثة
 عبد القادر علي عبد القادر قدو  الدروبي،أ حمد عبد السميع  القيسي،سارة دريد 

 الخلاصة: 

ال بعاد  في   ثلاثية  النماذج  اكتسبت  ال خيرة،  س ياق   3DMالآونة  في  خاصة  شعبية  الصناعية  ال طراف  مجال  في 

نشاء شكل الطرف المتبقي الناتج عن جمع الصور الطبية في التصوير الرقمي والاتصالات في الطب بتنس يق     DICOMا 

نشاء نموذج ثلاثي ال بعاد للطرف   MRIمن التصوير بالرنين المغناطيسي   بعد معالجة الصورة بدقة. في هذه الدراسة، تم ا 

بتر   من  يعاني  لمريض  الركبةالمتبقي  فوائد    تحت  يوضح  مما  الحاسوبية،  الرؤية  ونهج  الاصطناعي  الذكاء  دمج  خلال  من 

ثلاثة   أ على  دقة  لتوليد  الاصطناعية  والخوارزميات  الاصطناعي  الذكاء  على  القائمة  التجزئة  قبل -أ دوات  ال بعاد  نموذج 

من التصو  ثلاثي ال بعاد الناتج  الاصطناعي أ و في حالة المقارنة، النموذج  مع نموذج  تصميم الس نخ  ير بالرنين المغناطيسي 

آخر مولد من تقنية أ خرى، حيث يتم وضع طرف متبقي لمريض يبلغ من العمر   عامًا مصاب ببتر في    23ثلاثي ال بعاد أ

س نخ صناعي، ويبلغ وزنها  الساق اليس  تم    168كجم، وطولها    62ى ويرتدي بطانة  مرتفع.  سم، ومس توى نشاطها 

. تمت قراءة صور التصوير بالرنين  GE Medical Systems  ،1,5  Tesla Signa Exciteفحص المريض باس تخدام  
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لاسترداد البيانات التعريفية ال ساس ية مثل تباعد وحدات البكسل وسمك الشريحة.    DICOMالمغناطيسي بتنس يق  

تمت معالجة هذه الصور للحصول على نموذج يعكس الشكل الحقيقي للطرف المتبقي باس تخدام خوارزمية محددة، وتم  

لنموذج ثلاثي ال بعاد التي تم  اس تخراج النموذج ثلاثي ال بعاد باس تخدام أ دوات تجزئة الذكاء الاصطناعي. تثبت نتيجة ا

مكانية نهج الذكاء الاصطناعي مع التعلم العميق لا عادة بناء النماذج ثلاثية ال بعاد، وخلصت   الحصول عليها بدقة عالية ا 

ال عضاء تصنيف  في  هائلة  مكانات  ا  مع  الطبية،  الصور  تحليل  في  فعال  دور  له  الاصطناعي  الذكاء  أ ن  لى  ال نسجة  /ا 

 .تلقائيًا وبشكل متكرر 3DMوتقس يمها، وبالتالي الحصول على 

1. Introduction  
In the prosthetic field, a discernible trend toward 

individualized patient care has emerged, notably in 
scenarios involving getting residual limb morphology. 
When addressing imaging modalities such as magnetic 
resonance imaging (MRI), and computer tomography 
(CT) scans, the delicate balance between ensuring 
patient safety and getting improved images to avoid re-
scanning again stands as a pivotal consideration.  

Prosthetics specialists benefit from the integration 
of image-guided interventions as they are crucial either 
in finite element analysis for determining loading 
conditions of segmented models derived from medical 
imaging [1], or in the study of the interference between 
the skin of the stump and the inner surface of the 
socket due to differences in geometric shapes, which 
is also known as overclosure [2]. Utilizing imaging 
modalities such as (CT) or (MRI) scans facilitates the 
acquisition of the internal and external surface and the 
bones of the residual limb [3], [4], [5] to reconstruct a 
three-dimensional (3D) model. Numerous 
methodologies are available for medical image 
segmentation, including traditional techniques based 
on regions and edges, as well as deep learning-driven 
approaches. Traditional methods face challenges 
stemming from non-uniform grayscale characteristics, 
unique individual differences, visual anomalies, and 
interference like image imperfections, and 
disturbances, furthermore, the time-consuming nature 
of 3D model creation, which demands the 
involvement of trained engineers, poses additional 
hurdles. 

The cornerstone for crafting these 3D models 
hinges on image acquisition practices. Enhanced MRI 
scans have been recognized as the most dependable 
method for reconstructing the human body's muscles, 
tendons, and external morphology [6], [7]. Although in 
the past, the three-dimensional models were created 
automatically using specific radiological software, 
contemporary advancements have ushered in 
dedicated technologies enabling the development of 
highly precise and accurate 3D virtual reconstructions 
using artificial intelligence, utilizing professional 
software that can improve precision and ensure the 
integrity of the final model [8]. To overcome these 
challenges, the integration of artificial intelligence (AI) 
algorithms emerges as a pivotal solution, where AI, 
characterized by machines' ability to execute tasks and 
tackle issues without explicit programming, offers 
substantial promise in overcoming limitations 
associated with human factors [9]. Deep learning 

models have demonstrated remarkable efficacy in 
image segmentation, enhancing disease diagnosis 
precision and reducing extraneous computations. 
However, a recent systematic review and meta-analysis 
underscored that the specialty's comprehensive data 
accessibility through DICOM formats positions it 
uniquely for AI integration [10,11] to produce 
predictive models [12], potentially leading the way for 
AI advancements in other interventional fields such as 
diagnostic medical imaging [13,14] and analyzing 
patient data [15]. In medical technologies, Bitkina et al. 
identify the current state of artificial intelligence in 
medicine and prospects for future use [16]. In the 
prosthetics field, Deep Learning Models were used to 
Predict Prosthetic Ankle Torque [17], a machine-based 
model to detect the nominal alignment in transfemoral 
prosthetics [18], fuzzy logic-based modelling to 
forecast the impact of various surface reconstruction 
parameters on surface deviation response post 
transtibial prosthesis socket scanning [19]. In this 
study, a case was illustrated where artificial intelligence 
algorithms were employed to achieve a full 
reconstruction of the residual limb 3D model of a 
transtibial amputee, highlighting the accuracy and 
precision of the resulting 3D model, utilizing DICOM 
images from an MRI scan. 
 

2. Materials and Methods 
In this study, MRI images for a residual limb of a 

patient with transtibial amputation in the left leg (the 
age:23years, the weight: 62 kg, the height: 168 cm, sex: 
male with high activity level, amputated due to car 
accident, the level of the amputation is medium and 
wearing a prosthetic socket liner (ALPS Cushion 
Liner, HD Gel) with 6mm thickness (SPFR (HD)26-
6), were utilized and taken by the GE Medical Systems, 
1,5 Tesla Signa Excite, in Baghdad Scan Medical 
Center By Dr. A.G. Iraq. The test parameters values 
were set as follows: the series description T1 3D Axial, 
FOV of 23x23 cm, bitmap dimension 256x256 pixels 
obtained through repetition time (RT) = 5.052 (ms), 
echo time (ET)= 2.42 (ms) sequence, scan time 4 
(min), slice thickness 3.0 (mm), distance between 
images 0.6 (mm). Images were acquired with a flexible 
phased-array surface coil wrapped around the limb. 
When a body segment is scanned, the MRI equipment 
captures images in the form of slices depending on the 
machine settings and the detail required. This single 
slice of information is filed in Digital Imaging and 
Communications in Medicine (DICOM) format. All 
DICOM data were exported to the application for 
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processing and displaying medical images (RadiAnt 
DICOM Viewer 2023.1, Poznan, Poland). MRI slices 
were affected by noise due to the artifact caused by the 
little movement of the leg while taking the scan, 
causing a loss in detail quality, which requires 
preprocessing philtre to enhance clarity and definition. 
The 3D reconstruction was done followed by a 
volumetric reconstruction and a wrap, and then saved 
as stereolithography (STL) files (Fig. 1). It should also 
be noted that some problems occurred using the 
flexible coil device, whose integration with the MRI 
apparatus used for lower limb scanning was difficult; 
the magnetic core has a diameter of only Φ = 30 cm 
and requires horizontal leg positioning, while the 
system needs a little more volume to be fully 
performing to cover all the residual limb length. 
 

3. Image Processing 
After image acquisition, 244 images with 141 KB 

for each image were extracted, 14 were excluded due 
to the repetition and the included no feature, and 16 
images were unable to be selected when imported into 
the 3D slicer 5.6.1 software (https://www. slicer.org/, 
accessed on 7 June 2023) Because of image noise and 
the difficulty of detecting the boundary of the end of 
the residual limb (Fig. 2). In the 3D slicer, the 
interested area of the images was enlarged using (Crop 
Volume for the region of interest ROI) (Fig. 3), the 
resulting images were saved in a DICOM format at 
130 KB, and the noises of the images were reduced. 
The specific image processing to create a complete 
model for the residual limb is done by utilizing the 
pixel data information that is kept in the DICOM 
image header, which includes image resolution, slice 
instance number, slice thickness, etc. by new deep-
learning methods for suppressing artifacts and 
improving overall quality.  The data portion of the file 

contains pixel intensities arranged in rows, enabling 
accurate pixel placement after image processing with 
bitmap images matching the resolution and color 
details of the DICOM image. The rest of the image 
processing was completed using MATLAB algorithms 
and artificial intelligence (AI) tools. The overall 
fundamentals of digital image processing are shown in 
(Fig. 4) with 7 steps that are used for this study, 
including image reading, segmentation, processing, 
visualization, and mesh generation for further analysis 
or visualization. The process of image reading, and 
metadata extraction involves reading a DICOM image 
to retrieve essential metadata such as pixel spacing and 
slice thickness. 

Subsequently, image segmentation techniques are 
employed, including (Otsu's thresholding) method. 
utilizing the (graythresh) function to create a binary 
image, followed by the conversion of the grayscale 
image to a binary format using the (imbinarize) 
function based on the determined threshold.  

Further refinement is achieved through Canny 
edge detection applied to detect edges within binary 
images. The resultant processed images are stored in a 
3D logical array, which is then converted to uint8 
format for the purpose of saving the modified images. 
These modified images are then saved as DICOM 
files, ensuring that the updated metadata is included. 
For visualization purposes, the processed images are 
converted to single precision and visualized using the 
Volume Viewer tool. Additionally, surface mesh 
generation is conducted by creating an iso-surface 
from the processed images, adjusting vertex 
coordinates using metadata, and generating a 
triangulation object for the surface mesh. Following 
this, the surface mesh is plotted and displayed with 
specific visualization settings, and the faces and 
vertices of the mesh are saved as an STL file to 
facilitate their utilization in 3D modelling applications. 

The end of 

the stump 

Vitamin E 

marker on 

the patellar 

tendon 

Patella 

Supracondyla

r level 

Figure (1): The 3D model has destruction from the end of the stump due to the coil size and the 
existence of the artifact. 
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Figure (2): The noise of the images causes the difficulty of detecting the boundary of the end of the residual limb.  

 

Figure (3): Using the Crop Volume function in 3D slicer to specify the interested area. 
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Figure (4): The fundamental steps of digital image processing. 
 

4. 3D Reconstruction With AI 
To achieve a three-dimensional model with 

increased precision, specifically tailored to the patient 
consisting of all residual limb structures including the 
end of the stump part, AI including deep learning was 
used based on the operative workflow demonstrated 
in (Fig. 5) that consists of five consecutive steps: 
Automated Metadata Extraction, Image Segmentation, 
Enhanced Image Processing, Intelligent Metadata 
Modification, Efficient Visualization and Mesh 
Generation. 

By harnessing the capabilities of deep neural 
networks, the anatomical structures in medical 
images can be can now accurately classified and 
outlined, paving the way for automated 3D model 
reconstruction. This breakthrough has the potential 

to streamline processes in medical applications like 
diagnostic imaging and surgical planning. The role of 
artificial intelligence in this study is primarily focused 
on enhancing the efficiency and accuracy of medical 
image processing for DICOM images by 
automatically extracting and analysing metadata from 
DICOM files and enabling efficient data 
interpretation. AI algorithms aid in image 
segmentation by automatically identifying regions of 
interest, such as pixel spacing and slice thickness, 
crucial for medical image analysis. Using AI-powered 
techniques like thresholding and edge detection 
improves image processing accuracy and speed, 
contributing to more precise medical image analysis. 
AI facilitates the intelligent modification of metadata 
for new images, ensuring that essential information is 
correctly updated for further analysis and sharing.  

 
Figure (5): The fundamental steps of digital image processing. 

 
AI streamlines the visualization process and 

surface mesh generation by optimizing image data 
conversion and adjustment based on extracted 
metadata, enhancing the overall efficiency and 
accuracy of 3D model creation. The present case 
study seeks to explore the synergistic integration of 
cutting-edge computer vision techniques and state-
of-the-art deep learning segmentation algorithms. As 
previously elucidated, the ambiguous slices 
encompassing the distal aspect of the residual limb 

were meticulously segmented through the 
employment of the 3D Slicer platform, leveraging a 
combination of automated and manual segmentation 
methodologies. These techniques harness the power 
of computer vision algorithms predicated on 
grayscale intensity values to delineate the anatomical 
structures of interest. 

While the automated segmentation processes 
yield robust and consistent results, a degree of 
manual refinement is often necessary to further 
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refine the contours of the anatomical structures to 
eliminate any erroneous "noise pixels" that may have 
been inadvertently included. By employing this 
approach, which capitalizes on the strengths of both 
automated and manual segmentation techniques, it 
was able to generate high-fidelity segmentation 
results.  
 

5. Results 
The Segmentation using 3D Slicer is an automatic 

tool based on AI. These cutting-edge algorithms are 
designed to accept any series of MRI scans as input 
and subsequently undertake the automated 
segmentation of a diverse array of anatomical 
structures of interest.  The resulting 3D model after 
the segmentation of each one of the unclear slices in 
the end stump contains the end part of the residual 
limb but it is affected by noise due to the artifact 
caused by the little movement of the leg while taking 
the scan (the black circle) (Fig. 6). After 3D model 
construction, comprehensive images were re-
processed using a proprietary algorithm. This 
algorithm meticulously re-processed each image, 
ensuring optimal quality and format compatibility. 
The processed images were then saved in the Bitmap 
(BMP) file format, a widely recognized standard for 
high-fidelity image representation. The new surface 
reconstruction that displays using code is more 
accurate and the details of the end of the stump can 
be observed (Fig. 7, a). The resulting model was 
saved in STL file format and loaded to software 
program Geomagic® Freeform® (333 Three D 
Systems, Circle Rock Hill, SC 29730, USA) to create 
a clay with no voids (Fig. 7, b), then the model loaded 
to Meshmixer (Autodesk, Inc., San Rafael, CA, USA) 
software for additional modifications including 
deleting non-interested areas, mesh, smoothing, and 
using the inspector tool to finish the modification 
process. (Fig. 7, c) demonstrated the final 3D model 

with a high accuracy and features that are needed to 
complete the shape of the residual limb. 

 

6. Discussion 
The creation of three-dimensional models with 

high accuracy is mainly in demand, especially with 
regard to the application of the medical field 
especially in prosthetics when dealing with patients 
with various amputations where the images of the 
residual limb have been obtained through medical 
imaging techniques such as magnetic resonance 
imaging MRI, Where authorized programs for 
medical application are used that are able to obtain 
hyper-accurate models. 

However, this process is often burdened by 
numerous time-consuming and repetitive tasks, which 
can lead to diminished precision and a heightened risk 
of systemic errors. In this context, the advent of 
artificial intelligence (AI) plays a pivotal role, 
potentially offering engineers a transformative 
solution to these challenges. 

The application of AI techniques alone has not 
allowed for generating 3D models suitable for 
prosthetic applications, particularly in achieving 
accurate residual limb shapes. This limitation 
necessitated the incorporation of additional 
algorithms, coupled with expertise in design software 
and meticulous adjustments, to meet minimal clinical 
requirements. The integration of AI with computer 
vision algorithms, however, shows great promise. It 
accelerates the modelling process and yields results 
comparable to the gold standard manual approaches 
while reducing dependence on operator intervention. 
In the future, further improvement of deep learning 
algorithms with multiple datasets training them to 
recognize more details will allow us to achieve optimal 
results, meeting clinical requirements and realizing 
detailed 3D reconstructions using artificial intelligence 
only. 

 
Figure (6): Artificial intelligence segmentation of the slices that include the end part of the residual limb was 

repeated to include all the missing parts in that area.
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Figure (7): (a) The output model from the provided code that includes the pre-processing for all MRI slices saved in 

STL format. (b) The 3D model after being loaded into Freeform software. (c) the 3D model after additional 
modifications in  Meshmixer. 

 
Moreover, deep learning has the potential to be 

integrated into all stages of the modelling process, 
ensuring a consistent, repeatable quality standard that 
is independent of operator input. Nevertheless, it 
remains imperative that AI-generated results are 
verified by expert users to confirm their reliability and 
accuracy.  
 

7. Conclusion 
The integration of artificial intelligence (AI) with 

medical imaging has revolutionized the field of 
prosthetics, particularly in the creation of high-fidelity 
3D models of residual limbs. The study presented 
herein demonstrates the potential of AI algorithms in 
enhancing the accuracy and efficiency of image 
segmentation and 3D reconstruction processes, as 
exemplified by the case of a transtibial amputee. The 
use of AI-driven tools, such as the Segmentation by 
3D Slicer with an additional algorithm supported by 
AI, has shown promising results in automating the 
segmentation of MRI scans, thereby reducing the 
time-consuming manual tasks associated with 
traditional methods. 

Looking ahead, the continuous refinement of deep 
learning algorithms and their integration with 
computer vision techniques hold the promise of fully 
automated, high-quality 3D model creation, which 
could significantly impact the field of prosthetics. This 
advancement could lead to better fitting prosthetic 
devices, improved patient outcomes, and a reduction 
in systemic errors associated with manual 
segmentation processes. 

In conclusion, the synergy between AI and medical 
imaging represents a significant stride toward 
personalized patient care in prosthetics. As the 
technology matures, it is poised to become an 
indispensable tool in the hands of prosthetics 
specialists, enabling them to deliver more precise and 
efficient care to their patients. The future of AI in 
prosthetics is bright, and its full potential is yet to be 
realized. 
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