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Abstract 

 The technique of recording muscle signals is crucial in determining how 

effectively they can be utilized for individual benefit. This study focuses on 

hand movements recognized by using the Myo armband and 

Motion Processing Unit (MPU) 6050 sensors. Linear Discriminant Analysis 

(LDA), K-nearest neighbors (k-NN), and Support Vector Machine (SVM) 

were employed for classification. sEMG signals using the Myo armband for 

7 hand gestures and 2 elbow movements were recorded from 10 healthy 

subjects. Results showed that SVM outperforms LDA and k-NN in 

accuracy in both cases, the sensor is worn once on the arm and again on the 

forearm. regions. The window size and choice of features significantly 

influence system accuracy, with SVM achieving an average accuracy of 

89.84%. Besides that, the fusion of Myo Armband sensor and gyroscope 

sensor through OR rule makes significant enhancement in recognition 

accuracy with which is reached to 97.0135%. In conclusion, the Myo 

armband, when worn on the forearm, proves practical for hand gesture 

recognition, with SVM offering superior recognition accuracy. Furthermore, 

the combination of the Myo Armband sensor and the gyroscope sensor 

showed higher recognition accuracy. 

Keywords: Surface ElectoMyoGraphy, Support Vector Machine, Linear 

Discriminant Analysis, k-Nearest Neighbors. 

 و سنسر محدد الاتجاهات  تقييم أ داء التعرف على الإيماءات باس تخدام السنسر العضلي
 اياد مراد الطخاخ  ،محمد زكي الفائز ،سعد محمود سرحان

 الخلاصة: 

بفعالية لتحقيق الفائدة الفردية.    مكانية اس تخدامها  تعُد تقنية تسجيل اإشارات العضلات ضرورية لتحديد مدى اإ

 Motion Processing Unitومستشعر   Myo تركز هذه الدراسة على التعرف على حركات اليد باس تخدام سوار  

(MPU) 6050. تم اس تخدام تحليل التمييز الخطي (LDA)وأ قرب الجيران ، (k-NN)وأ لة الدعم المتجهية ، (SVM) 

أ شخاص   10لس بع حركات يد وحركتين للكوع من   Myoباس تخدام سوار   sEMGللتصنيف. تم تسجيل اإشارات  

 .أ صحاء

أ ن    النتائج  ارتداء   k-NN و LDA تفوقت على SVMأ ظهرت  الحالتين، سواء عند  الدقة في كلتا  من حيث 

المستشعر على الذراع أ و الساعد. كما أ ن حجم النافذة واختيار الميزات لهما تأ ثير كبير على دقة النظام، حيث حققت  

SVM   بلغ أ دى دمج مستشعر .%89.84متوسط دقة  محدد ومستشعر   Myo Armband علاوة على ذلك، 

 .%97.0135اإلى تحسين ملحوظ في دقة التعرف، حيث وصلت اإلى  OR باس تخدام قاعدة الاتجاهات

يماءات اليد، مع تفوق   Myo Armbandختامًا، يثبت سوار    عند ارتدائه على الساعد فعاليته في التعرف على اإ

SVM   في دقة التعرف. بالإضافة اإلى ذلك، أ ظهر الجمع بين مستشعرMyo Armband   محدد الاتجاهات ومستشعر 

 .زيادة في دقة التعرف

1. Introduction  
The relationship between humans and robots has 

garnered significant interest from the academic 
community, technological firms, government labs, and 
other sectors [1]. There are multiple muscles in the arm 

and forearm that move the hand and fingers. The 
forearm is split into the anterior compartment and 
posterior compartment by the deep fascia of the 
forearm, which covers 13 muscles in the forearm. 
These compartments are frequently separated by three 
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barriers [2]. Three main layers make up the anterior 
compartment muscles: the superficial layer, middle 
layer, and deep layer. These muscles' primary job is to 
allow for the pronation of the hand, as well as wrist 
and finger flexion. The superficial layer and deep layer 
are the two main layers in which the posterior 
compartment muscles are located. The muscles in the 
posterior compartment primarily extend the fingers, 
with auxiliary activities including wrist extension and 
supination [3]. A visual-based gesture recognition 
system primarily uses a camera to perceive gestures. 
These systems frequently have many issues, including 
position, hand motion modelling complexity, 
sensitivity to light, and changing distance. However, 
because they rely on the muscular contraction of the 
hand rather than external sensor detection, hand 
gesture recognition systems based on internal sensor 
detection (such as surface electromyography (sEMG) 
signal) are thought to be one of the distinguishing 
techniques [4]. Surface electrodes and needle 
electrodes (into the skin) are the two primary electrode 
types used to capture EMG signals, and there is little 
difference between them [5]. Surface electrodes come 
in two varieties: gelled and dry sEMG electrodes [6]. 
Self-balancing robots use IMU sensors, such as the 
MPU 6050. IMU sensors are typically made up of 2 or 
more components. The accelerometer, gyroscope, 
magnetometer, and altimeter are listed in order of 
priority. As an IMU sensor with 6 axes and 6 degrees 
of freedom, the MPU 6050 provides 6 values as 
output: three from the gyroscope and three from the 
accelerometer. A sensor built using MEMS (micro 
electro mechanical systems) technology. A single chip 
contains both the gyroscope and the accelerometer. 
The inter-integrated circuit (I2C) protocol is used by 
this chip for communication. When the gyroscope and 
accelerometer of the MPU sensor are combined, 
efficiency increases. In addition, integrating the Myo 
Armband sensor with the MPU 6050 sensor will 
improve the recognition accuracy of the output [7]. 
The goal of this study is to integrate sensors for the 
purpose of overcoming the weakness in the muscles of 
the upper limbs and to demonstrate the possibility of 
relying on information whose accuracy does not 
depend on muscle strength. 

 

2. EMG Signal Processing 
This section describes the sEMG signal, how it is 

generated, and how to detect it. Additionally, the 
pattern recognition system is demonstrated for use in 
sEMG signal analysis to differentiate hand motions. 

2.1. The electromyogram (EMG) signal 
The amplitude, frequency, and phase of the EMG 

signal, which is often a function of time, can be used 
to define the signal. This signal, which represents 
neuromuscular activity, is a biological signal that can 
be detected as electrical signal during muscle 
contractions. The amplitude range of the EMG signal 
is 0–10 mV (±5 mV) before amplification. As EMG 
signals travel through various tissues, noise is picked 
up [8]. The EMG frequency ranges vary based on the 
type of investigation from 0.01 Hz to 10 kHz (invasive 
or non-invasive). The frequency ranges between 50 
and 150 Hz are the most crucial and beneficial [9]. 

2.2. Myo gesture armband 
The wireless, 8-channel Myo gesture control 

armband is a wearable device designed primarily to 
detect and measure EMG signals from the muscles in 
the forearm as shown in Fig. 1. Thalmic Labs 
developed cutting-edge technology for this device. 
Gyroscope, accelerometer, and magnetometer are its 
three component pieces. All of these components, 
which individually have the x, y, and z axes, together 
comprise the Inertial Measurement Unit (IMU). It has 
2 batteries inside, each of which is located in a different 
place and has a capacity of 260 mAh and a voltage 
range of 1.7 to 3.3 volts. It has a 200 Hz sampling rate 
[10]. 

 
Figure (1): Myo gesture armband [11] 

2.3. Pattern recognition system 
Signal segmentation, feature extraction, and 

implementation of the appropriate classification to 
ascertain the new samples’ class are the three 
fundamental building blocks of a pattern recognition 
method. The input raw EMG signal is segmented 
during the training stage of the pattern recognition 
algorithm, and feature extraction is used to convert 
each segment into a collection of features. These 
features gather pertinent information on each 
segment, which is then used to classify it [12]. 
2.3.1. sEMG segmentation technique 

Many techniques, including the adjacent scheme, 
overlap scheme, and segmentation technique, are 
employed in the segmentation portion to cut off the 
sEMG signals. This study makes use of an overlapping 
approach. This segmentation approach divides the 
sEMG signals into regular time slot windows that 
overlap. In the overlap technique, the Classification 
Decision (CD) can be determined as: 

CD =
1

2
Ta +

1

2
Tnew + τ                             …(1) 

where 𝑻𝒂 is the length of the analytic window, 

𝑻𝒏𝒆𝒘 is the window increment, and 𝝉 is the processing 
time. The method is referred to as adjacent windowing 

when 𝑻𝒏𝒆𝒘=𝑻𝒂 [13]. 
2.3.2. Feature extraction, reduction, and 

classification 

The characteristics of amplitude and frequency 
information are essential for differentiating sEMG 
signal patterns. The amplitude and frequency-related 
Time Domain (TD) characteristics are helpful features 
[14]. Recently, scholars have been using TD features 
extensively to identify patterns in sEMG signals 
because of its cheap processing cost [15]. 6 TD 
features were extracted as follows: 

• Root Mean Square (RMS): It possesses 
frequency-related characteristics that 
correspond to the segment's square root of 
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the mean square. RMS is mathematically 
represented as follows: 

RMS = √
1

N
∑ xi

2N
i=1                                       …(2) 

Where: 𝑥𝑖 represents the sEMG signal and N denotes 
the sample number of the sEMG signal. 

• Mean Absolute Value (MAV): It has 
amplitude-related characteristics that 
represent the computation of the segment's 
mean absolute value. MAV is mathematically 
represented as follows: 

MAV =
1

N
∑ |xi|

N
i=1                                         …(3) 

• Slope Sign Changes (SSC): It possesses 
frequency-related properties that can count 
and identify shifts in the slope sign of the 
sEMG signal. SSC is mathematically 
represented as follows:  

SSC = ∑ |f[(xn − xn−1)(xn − xn+1)]|N=1
n=2    …(4)  

Where: xn-1, xn, and xn+1 have been used for any three 
successive values. 

• Waveform Length (WL): It has amplitude-
related features that represent the cumulative 
length of the sEMG waveform over the time 
segment. The mathematical representation of 
WL is as follows:  

WL = ∑ |xi+1 − xi|
N=1
i=1                                … (5) 

• Zero Crossings (ZC): It has frequency-
related features that count the number of 
signal amplitudes crossing the zero amplitude 
over the time segment. The mathematical 
representation of ZC is as follows:  

ZC = ∑ sgn(xnxn+1) ∩ |xn − xn+1| ≥N=1
n=1

threshold,  

where, sgn(x) = {
1        if x ≥ threshold
0                    otherwise

 …(6) 

• Autoregressive (AR): This is the linear 
combination of the error term and the 
previous windows. The following is how AR 
is represented mathematically: 

xk = ∑ aixk−1 + ek
p
i=1                                 … (7) 

Where: 𝑎𝑖 is the autoregressive coefficients, p is the 

model order, 𝑥𝑘-𝑖 is the sEMG sample, and 𝑒𝑘 is the 
residual white noise. Features reduction is applied 
mainly to improve the performance of the classifier. 
LDA and Principal Component Analysis (PCA) are the 
two most popular feature reduction techniques [13]. In 
this study, LDA, k-NN, and SVM were investigated to 
determine how well they classified 2 elbow movements 
and 7 hand gestures based on sEMG signals. 

2.3.2.1. SVM classifier 
The SVM is a linear model that creates non-linear 

classification boundaries. It concludes a 
computationally efficient route of learning a "good" 
splitting hyperplane in dimensional feature space, 
whereby a "good" hyperplane could differentiate 
between fresh sample classes. To generalize optimal 
hyperplanes, there are different mathematical 
algorithms used depending on the data set separable 

state [16]. When the situation becomes linear, SVM 
transforms the data nonlinearly using appropriate 
selection basis functions into a higher-dimensional 
feature space. This transformation represents the 
concept of implementing the kernel trick. The Radial 
Basis Function (RBF) kernel as in expression (8) and 
linear as in expression (9) were used in this work, 
where: 

K(xn, xi) = exp (−γ ∥ xn − xi ∥2  )            ... (8) 

This is the RBF kernel, which measures similarity 

between two input vectors xn and xi (Non-linear) 
The exponential function ensures that points closer in 
space have higher similarity, while distant points have 
lower similarity. 
Parameters: 

• K(xn, xi)→ Kernel function output (measuring 
similarity between two data points). 

• xn, xi → Feature vectors of two data points. 

• ∥xn, xi∥2→ Squared Euclidean distance between 
the two vectors. 

• γ\gamma → Controls how much influence a single 
training sample has: 

o Higher γ: More localized influence (small decision 
boundaries, risk of overfitting). 

o Lower γ: More generalized influence (smooth 
decision boundaries, risk of under fitting). 

K(xn, xi) =  (γxn, γxi)                                 …(9) 

• This represents a linear kernel, where the 
similarity between two points is calculated as a 
simple dot product. 

• The multiplication by γ scales the feature space 
but does not introduce non-linearity. 

Parameters: 

• K(xn, xi)→ Kernel function output (similarity 
measure). 

• xn, xi→ Feature vectors of two data points. 

• γ → Scaling factor that adjusts the influence of 
feature values. 
Let us now define two key concepts that will be 

used often throughout this text. 

• Support vectors: are the spots nearest to the 
hyperplane. The data points will be used to define 
a separation line. 

• The margin: is the distance between the hyperplane 
and the observations nearest to it. In SVM, a big 
margin is considered excellent [17].  

Fig. 2, shows the basic principle of support vectors. 

 
Figure (2): The support vectors[20]. 

2.3.2.2. LDA classifier  
A new observation should be assigned to mutually 

exclusive groups using the LDA, a statistical classifier. 
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Similar to the SVM technique, the goal of LDA is to 
locate a hyperplane that can divide the data points into 
various classes. Under the premise of normal data 
distribution, this hyperplane can be discovered by 
looking for a model that increases the distance 
between the mean of the classes and decreases the 
variation within each class [18]. The LDA is based on 
the Bayes rule of classification. For a specifically tested 

vector 𝑥 would be predicted to group 𝐶𝑘 as this 
variance is fulfilled in the following expression 

P(Ck ǀ x) =
P(Ck) P(x ǀ Ck)

Px
                              … (10) 

Where P(x) is the training space's probability 
density function, which is also presumed to be equal 
for all classes, P(Ck) is the prior probability for class k 
and P(x | Ck) is the probability density function for 
the test vector within the k class [17][19]. 
2.3.2.3. K-NN classifier 

The KNN is a lazy learning and non-parametric 
algorithm. Non-parametric means there is no 
hypothesis for underlying data distribution [20]. 
Starting at the test point, the k-NN method expands 
the region until it has k training samples, then uses the 
majority vote of these samples to determine the test x 
point [13]. 

 

3. Materials and Methods 
10 healthy subjects were involved in this study. 

Table 1 contains details about the 10 healthy 
participants in this investigation. 

Table (1): Information on healthy subjects. 

Subjects Gender Age Weight 
(kg) 

Length 
(cm) 

Subject1 Male 44 76 170 

Subject2 Male 42 81 173 

Subject3 Male 41 75 165 

Subject4 Male 38 72 169 

Subject5 Male 25 69 160 

Subject6 Male 35 73 172 

Subject7 Female 34 66 165 

Subject8 Female 40 74 170 

Subject9 Female 39 70 164 

Subject10 Female 22 61 159 

A variety of subjects took part, as indicated in 
Table 1 above, and the Myo gesture armband was used 
to record all of the sEMG signals from the right hand. 
By placing the armband on the forearm region, 8 
datasets (each containing 7 movements) were recorded 
for each individual, as indicated in Table 2.  

Table (2): Hand gestures with properties (Myo 
armband on the forearm and arm). 

No. Forearm Arm Name Description 

1 
  

rest 
The hand is 

relaxed 

2 
  

close 
The hand is 

tightly closed 

3 
  

open 
The fingers 

are fully 
opened 

4 

  
left 

The hand is 
turned to the 

left 

5 

  
right 

The hand is 
turned to the 

right 

6 

  
up 

The hand is 
directed 
upward 

7 

  
down 

The hand is 
directed 

downward 

 
Each single data set is composed of 56000 

samples (7 gestures×8 sensors (Myo Armband 
composed of 8 EMG sensors) ×5 seconds (recording 
time for each gesture) ×200 samples (sampling 
frequency for Myo Armband=200Hz)) represented in 
a 7000 × 8 matrix as shown in Table (3). In addition, 
each gesture is composed of 1000 data samples and for 
first gesture (rest) starts from sequence 1 to 1000, the 
second gesture (close) starts from 1001 to 2000, and 
so on, whereas the 7th gesture starts from 6001 to 7000. 
The length of each dataset is 35 seconds because each 
gesture in the dataset lasts for five seconds and begins 
with a resting hand motion. Each subject's entire 
dataset recording lasts for 280 seconds. 

Table (3): Matrix of channels and the movements 

 
Using a cross-validation technique, the dataset was 

split into a training set (80%) and a testing set (20%). 
The original dataset is randomly divided into k sub-
datasets of equivalent size for cross-validation. While 
one sub-dataset is preserved as validation data to test 
the model, the remaining sub-datasets are used as 
training sets. The recorded datasets were divided into 
8 smaller datasets to execute cross-validation as shown 
in Fig.3. The identical hand motions were recorded 
once again during the recording process, which was 
performed for all datasets by positioning the sensor on 
the arm region, as indicated in Table 2. Two elbow 
movements (flexion and extension) also were recorded 
for ten subjects. 

 
Figure (3): Cross-validation k-fold technique with 

k=8 
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The consequences of the motor units' firing rates 
on the sEMG signals cause intrinsic instability to 
occur. The noise ratio in sEMG signals is practically 
low when using the Myo gesture armband, and it has 
no effect on the results. Usually between 0 and 2 mV, 
the sEMG signal voltage is quite low. Processing, 
identification, and gesture selection are critical issues 
for the gestural interface to work well. The movements 
were chosen based on the existence of a large 
difference between them, in addition to the fact that 
they exert more effort than others, and thus they help 
in the rehabilitation process. The MPU sensor was 
employed to monitor the flexion and extension 
movements of the elbow and hand as shown in Fig.4. 

 
Figure (4): Flow chart of direction and muscle signal 

fusion method. 
 

4. Data Processing and Analysis 
The sEMG signals corresponding to 7 hand 

gestures from 10 subjects were immediately recorded 
and saved onto a personal laptop. Then, using 
MATLAB (Version R2020a, The MathWorks, Inc.), 
data processing and analysis were carried out. The 
generally noisy character of the obtained sEMG data 
is caused by ambient noise, motion artifact, intrinsic 
noise in electronics equipment, and inherent instability 
of the sEMG signal. Ambient noise is caused by 
electromagnetic device radiation, whereas motion 
artifact noise is caused by the contact between the 
electrode and the skin. The consequences of the motor 
units' firing rates on the sEMG signals cause intrinsic 
instability to occur.  The signal-to-noise ratio in sEMG 
signals is essentially low when utilizing the Myo gesture 
armband, which has little impact on the sEMG data. 
Using the proposed SVM flowchart as shown in Fig. 
5. 

This attribute is thought to be crucial for the Myo 
armband. The offline mode was designed to improve 
system performance and calculate accuracy. The 
MATLAB R2020 program has been used to 
implement this mode. To ensure that its sensors are 
placed in the same locations each time it is used to 
record datasets, the Myo gesture armband should be 
worn consistently. This issue needs to be taken into 
account when recording data to prevent erratic 
readings. To compare the differences in accuracies 
between the two scenarios, the Myo armband is worn 
on the right forearm first and then the right arm in this 

investigation as shown in Tables 2. To capture the 
flexion and extension of the elbow joint, it is also worn 
on the right arm as shown in Table 2. All channels of 
the Myo armband were used to collect the sEMG data. 
The data collected by the Myo armband is transferred 
over Bluetooth to the PC for analysis and processing 
in the MATLAB R2020 environment. The recorded 
dataset (7 movements repeated 8 times with 5 seconds 
for each movement) lasts for 280s. The dataset's 
window size is 250 ms, with a 125 ms overlap. The 
total number of features extracted across all sets and 
channels is 72, which is equal to the product of the 8 
Myo channels and the 6 features (RMS, MAV, SSC, 
ZC, WL, and AR with order = 4) that are extracted for 
each window (segment). With the help of the K-NN, 
LDA, and SVM classifiers, the system's accuracy is 
calculated. 

 

 
Figure (5): The proposed flowchart of the SVM 

algorithm. 

This attribute is thought to be crucial for the Myo 
armband. The offline mode was designed to improve 
system performance and calculate accuracy. The 
MATLAB R2020 program has been used to 
implement this mode. To ensure that its sensors are 
placed in the same locations each time it is used to 
record datasets, the Myo gesture armband should be 
worn consistently. This issue needs to be taken into 
account when recording data to prevent erratic 
readings. To compare the differences in accuracies 
between the two scenarios, the Myo armband is worn 
on the right forearm first and then the right arm in this 
investigation as shown in Tables 2. To capture the 
flexion and extension of the elbow joint, it is also worn 
on the right arm as shown in Table 2. All channels of 
the Myo armband were used to collect the sEMG data. 
The data collected by the Myo armband is transferred 
over Bluetooth to the PC for analysis and processing 
in the MATLAB R2020 environment. The recorded 
dataset (7 movements repeated 8 times with 5 seconds 
for each movement) lasts for 280s. The dataset's 
window size is 250 ms, with a 125 ms overlap. The 
total number of features extracted across all sets and 
channels is 72, which is equal to the product of the 8 
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Myo channels and the 6 features (RMS, MAV, SSC, 
ZC, WL, and AR with order = 4) that are extracted for 
each window (segment). With the help of the K-NN, 
LDA, and SVM classifiers, the system's accuracy is 
calculated. 

 

5. Results and Discussions  
The findings of the studies and the variables 

influencing the system's accuracy are covered in this 
section. The duration of the window, the kind of 
characteristics chosen, and the classifier are 
determining factors. 
5.1. Window length and accuracy 

The window size was increased from 100 to 700 
milliseconds. Through a trade-off between system 
accuracy and delay time, the best results were obtained 
when the window size was 250 ms with 125 ms 
overlapping because the recognition accuracy was less 
when the window length was 260 ms or longer and 
when it was 240 ms or shorter. 
5.2. Extracted features and accuracy 

For 10 participants, 6 features and 8 channels of 
Myo gesture armband were selected. ZC had the least 
impact on system accuracy among MAV, RMS, WL, 
AR, ZC, and SSC features. When compared to LDA 
and k-NN classifiers, SVM classifiers had the best 
accuracy. By integrating 2 MPU sensors and accurately 
measuring the angles of both the hand and elbow, we 
achieved improved movement discrimination 
compared to using the Myo Armband sensor alone. 
5.3. Number of channels 

Fig.6 shows the 7 hand movements by using 8 
channels with 1000 samples for each movement 
arranged on the sequence rest, right, left, up, down, 
contract, and open. 

 
Figure (6): Raw EMG signal for 7 movements 

recorded with 8 channels. 

According to the electrodes' locations on the 
forearm region, the amplitude of each sensor is 
different in each movement. Since Channel 5 doesn't 
have an impact on the classification accuracy, it can be 
neglected during measurement to reduce the amount 
of data. Table (4) shows the average recognition 
accuracies (%) by using 8 sensors by placing the Myo 
armband on the forearm region. 

As shown in Table 4, the classification accuracies 
by using the SVM classifier were better than LDA and 
KNN classifiers. The same hand motions from Table 
5 were used to repeat this process, and the identical 

results (%) were displayed, highlighting the fact that 
the SVM is the most effective classifier based on these 
data. 

Table (4): Average recognition accuracies % for 
forearm region 

Subjects SVM LDA k-NN 

Subject1 92.8065 93.9371 83.3400 

Subject2 89.0798 89.8538 77.3339 

Subject3 91.8663 92.2295 71.1939 

Subject4 93.7838 93.7162 70.4054 

Subject5 94.2735 93.2621 68.7932 

Subject6 92.7968 91.3848 74.5310 

Subject7 82.5316 85.9496 65.4922 

Subject8 75.9051 74.4740 54.9093 

Subject9 92.3213 91.2231 88.3602 

Subject10 93.0313 92.0021 89.4204 

 
Table (5): Average recognition accuracies % for arm 

region 

Subjects SVM LDA k-NN 

Subject1 66.7540 69.0033 64.691 

Subject2 76.9116 78.9513 72.9599 

Subject3 52.2789 49.7162 41.5500 

Subject4 56.4238 55.6618 46.5404 

Subject5 64.3980 62.7094 55.0517 

Subject6 67.5652 66.9009 59.9216 

Subject7 66.2317 66.2330 59.4407 

Subject8 50.8350 49.3003 45.1190 

Subject9 57.3091 48.3421 44.6824 

Subject10 60.3401 55.3502 48.5603 

 
From Table 4, the average SVM accuracies for 10 

subjects were 89.8396% for the forearm region, and 
for the arm region (Table 5) were 61.9047%.  The 
result of the forearm was better than the arm with 
27.9349%. The flexion and extension were also 
recorded (%) by placing the sensor on the arm region 
as shown in Table 6 below. 

Table (6): Average recognition accuracies % for 
flexion and extension movements. 

Subjects SVM LDA k-NN 

Subject1 99.6032 99.4048 99.6002 

Subject2 99.2034 99.0213 99.0923 

Subject3 98.8032 98.2043 98.3902 

Subject4 99.6377 99.1836 99.4828 

Subject5 99.4667 99.0376 99.0184 

Subject6 99.7489 99.3859 99.8365 

Subject7 98.8367 99.8624 99.6425 

Subject8 99.7326 99.5277 99.4327 

Subject9 99.1834 99.3625 99.8265 

Subject10 99.8460 99.73657 99.0356 

 
From the above results, it was shown that the SVM 

was better than the other two classifiers. The high 
classification accuracy is due to 2 reasons: first, the 
number of movements is 2 only (flexion and 
extension), and second, the location of muscles 
responsible for these 2 movements are non-
overlapping (biceps for flexion and triceps for 
extension). The rest movement was the best with 80 
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% in SVM, 70 % LDA, and 80 % k-NN, while the 
worst movement in SVM was the left with 40 %, right 
movement with 30% in LDA, and right and down 
movements with 30% in k-NN.  
5.4. Fusion of the sensors 

The integration of the muscle sensor with 
gyroscope sensor shows a significant improvement in 
the accuracy of the measured signal, as shown in the 
Table 7 below.  

 
Table (7): Average recognition accuracies % for 
forearm region with and without fusion method. 

subjects SVM without 
fusion method 

SVM with 
fusion two 
sensors 

Subject1 92.8065 97.7589 

Subject2 89.0798 96.5306 

Subject3 91.8663 95.6498 

Subject4 93.7838 98.0320 

Subject5 94.2735 98.9555 

Subject6 92.7968 97.9088 

Subject7 82.5316 95.6229 

Subject8 75.9051 94.1994 

Subject9 92.3213 97.8240 

Subject10 93.0313 97.6532 

Average 89.8396 97.0135 

 
From the table above, the integration was carried 

out using the OR rule, through which we can identify 
the measured signal if we receive input from either the 
muscle sensor or the gyroscope sensor or both. 
Consequently, the result is much better than using any 
sensor individually. 

 

6. Conclusion 
The muscle sensor can be worn on the arm or on 

the forearm to record hand gestures. However, when 
worn on the forearm, the accuracy in distinguishing 
hand movements is much higher compared to wearing 
it on the arm. The purpose is to demonstrate the 
potential benefit of arm signals for individuals with 
amputations above the elbow. The ability to recognize 
human forearm gestures based on sEMG signals 
gathered by the wireless removing channel 5 reduces 
processing time and data required for classification. 
The SVM classifier in this study showed better 
recognition accuracy than LDA and k-NN classifiers 
with and without fusion method. The results showed 
that the system's accuracy is significantly influenced by 
the window's size and increased obviously in 
combination two sensors through OR rule. A 
suggestion for further study in this area would be to 
gather additional information from volunteers who are 
both able-bodied and physically disabled to get more 
firm conclusions about the system's accuracy. Adding 
more gyroscope sensors could make the recognition 
ability higher. 
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