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Abstract 

In order to avoid losing sense of sight in a large portion of the 

working population, Diabetic Retinopathy (DR) identification during 

broad examination for diabetes is crucial. To prevent blindness in the 

future, early illness detection and measurement of disease development 

are essential. DR is diagnosed through medical image analysis. After the 

success of Deep Learning (DL) in other applications in the real world, it 

is considered a vital tool for upcoming health sector applications, 

providing solutions with accurate results for medical image analysis. This 

review provides a comprehensive survey of the state-of-the-art DL 

models for DR detection and grading using retinal fundus photography. 

This review thoroughly examined and summarized 81 relevant 

publications that were published through IEEE Xplore, Web of Science, 

PubMed, and Scopus between 2018 and 2023 based on the available 

database with binary or multiclass CNN classification models as well as 

the main preprocessing techniques. According to the findings of this 

review, transfer learning has proven to be an excellent technique for 

addressing the problems of limited resources for data for DR analysis. 

CNN models having tens or hundreds of layers are the most frequently 

utilized frameworks for DR classification. The most extensively utilized 

datasets for DR categorization are Aptos 2019 and EyePACS. Although 

DL has attained or surpassed human-level DR classification accuracy, 

there is still more work to be done in real-world clinical procedures. 

Keywords: Diabetic Retinopathy, CNN models, DR Datasets Classification. 

شاملة لنماذج التعلم العميق المتطورة للكشف عن اعتلال الش بكية  دراسة

 لمرضى السكري وتصنيفه باس تخدام تصويرالش بكية 
 3, سوزان أ مانة رطان2, زياد طارق الدهان 1نور علي صادق

 الخلاصة 

الش بكية   اعتلال  تحديد  يعد  العاملين،  السكان  من  كبير  جزء  لدى  البصر  حاسة  فقدان  تجنب  أ جل  من 

ومن أ جل الوقاية من العمى في المس تقبل،  .  أ ثناء الفحص الشامل لمرض السكري أ مرًا بالغ ال همية(  DR)السكري  

ضرورياً  أ مرًا  المرض  تطور  وقياس  المرض  عن  المبكر  الكشف  تشخيص  .  يعد  الصور    DRيتم  تحليل  خلال  من 

نه يعتبر أ داة حيوية لتطبيقات  (  DL)بعد نجاح التعلم العميق  .  الطبية في التطبيقات ال خرى في العالم الحقيقي، فا 

توفر هذه المراجعة مسحًا شاملًا ل حدث  .  القطاع الصحي، حيث يوفر حلولًا ذات نتائج دقيقة لتحليل الصور الطبية

قامت هذه المراجعة بفحص .  نماذج التعلم العميق للكشف عن اعتلال الش بكية وتصنيفها باس تخدام تصوير الش بكية

 Web ofو  IEEE Xplore  المجلات العلمية الرصينة ضمن منشورًا ذا صلة تم نشرها من خلال  81وتلخيص  

Science  وPubMed  وScopus    لى قاعدة البيانات المس تخد  2023و   2018بين عامي   مة مع نماذج استنادًا ا 

CNN  لى تقنيات المعالجة المس بقة متعدد الفئات بالا ضافة ا  وفقا لنتائج هذه .  ذات التصنيف الثنائي أ و التصنيف 

تصنيف   و  المبكر  للكشف  للبيانات  المحدودة  الموارد  مشاكل  لمعالجة  ممتاز  أ سلوب  أ نه  التعلم  نقل  أ ثبت  المراجعة، 
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التي تحتوي على عشرات أ و مئات الطبقات ال كثر اس تخدامًا لتصنيف    CNNتعد نماذج  .  اعتلال ش بكية السكري

الش بكية هي .  اعتلال  الش بكية  اعتلال  مرض  لتصنيف  العام  في  واسع  نطاق  على  اس تخدامًا  ال كثر  البيانات 

Aptos2019  وEyePACS  على الرغم من أ ن  .  وتس تخدم من قبل العديد من الباحثين في هذا المجالDL   قد

لا   لا أ نه  على المس توى البشري، ا  مرض اعتلال الش بكية  وكشف  تصنيف  ما دقة  حد  لاى  تجاوزت  حققت أ و 

 . يزال هناك المزيد من العمل الذي يتعين القيام به في الا جراءات السريرية في العالم الحقيقي

المفتاحية نماذج  :  الكلمات  السكري،  الش بكية  التلافيفية  اعتلال  العصبية  مجموعات  (CNN)الش بكات   ،

 .بيانات اعتلال الش بكية، تصنيف اعتلال الش بكية

1. Introduction  
One of the most frequent conditions affecting 

people in their working years and one of the main 
causes of visual impairment across the globe is DR 
(DR) [1, 2]. Retinal microvascular disease is a result of 
diabetic complications, causing the disease. If 
diagnosed early on, effective therapy can avoid or delay 
the development of severe vision impairment. 
Therefore, it is essential that diabetics undergo routine 
screenings for DR (DR) with a suitable diabetic eye 
screening tool. Nevertheless, in its initial stages, the 
disorder has few signs and those that do present can 
occasionally be challenging to diagnose. As a result, 
diagnosis is expensive and time-consuming since 
skilled evaluators are required. There will be more 
patients experiencing retinopathy as a result of the rise 
in diabetes cases [3]. The restrictions that national 
health systems face around the world, as well as 
people's ability to work and hence the economy, 
necessitate the development of inexpensive and 
efficient patient screening methods. The color fundus 
images of the retina must be evaluated by a skilled 
image evaluator in order to use the current DR 
classification approach. Due to the manual nature of 
this process, classifications may vary throughout 
grading centers and may require time.  It will also take 
some time to return the results to patients for 
treatment [4]. Classification approaches involve 
detecting lesions linked to abnormalities of the 
vascular system [5]. It takes a lot of resources to 
implement this method, even though it works well. 
Sometimes the required equipment and experience are 
insufficient, particularly if DR is at its most severe and 
diabetes is highly prevalent in the community. The 
more people with diabetes there are, the more 
ineffective the infrastructure will become to avoid DR-
related impairment because the process of 
classification will take more time from clinicians. 
Computerized solutions are needed to support, 
replace, or expedite the diagnosis process because DR 
examinations have long been thought to be useless [6, 
7]. Machine learning has been used extensively for 
image classification, with effective and accurate 
outcomes [8, 9,10]. 

1.1. The Disease bio-marks: 
Currently, approximately 422 million people 

worldwide suffer from diabetes, and this proportion is 
expected to rise significantly [11,12]. There are two 
major forms of diabetes: type 1 and type 2. DR has 
been found to affect more than 25% of patients with 

type 2 diabetes and over 50% of those with type 1 
diabetes [13]. DR is now diagnosed clinically by 
identifying abnormalities in blood vessels in the retina 
has traditionally been considered a microvascular 
disease [14]. It is believed that hyperglycemia plays a 
role in the development of microvascular damage in 
the retina. In the early stages of the condition, 
hyperglycemia dilates retinal blood vessels and alters 
blood flow. For those who have diabetes, these 
modifications are assumed to represent metabolic 
autoregulation, which increases retinal metabolism 
[15]. Pericyte loss is another component that 
contributes to early-stage DR. Research conducted 
both in vivo and in vitro has revealed evidence linking 
high glucose levels to pericyte apoptosis [15]. Because 
pericytes give capillaries structural support, their loss 
results in localized capillary wall out-pouching. The 
first symptom of DR is a microaneurysm, which is 
brought on by the dilatation of retinal blood vessels 
and the outward protrusion of capillary walls [13].  
Little red spots in the superficial layers of the retina are 
warning signs of microaneurysms. The blood-retinal 
barrier is compromised when the disease progresses to 
the more severe non-proliferative stages because to 
pericyte reduction, endothelial cell degeneration, and 
thickened of the basement membrane [16]. Moreover, 
retinal ischemia and capillary obstruction are brought 
on by the notable loss of endothelial cells and pericytes 
(hypoxia). Cotton wool patches may occur as a result 
of an obstruction in the blood flow to the RNFL. 
When microaneurysms rupture in the deeper layers of 
the retina, such as the outer plexiform and inner 
nuclear layers, dot and blot hemorrhages may result. 
Hard exudate and retinal edema are the results of 
serum lipids, proteins, and proteins leaking out of the 
arteries due to the breakdown of the blood-retina 
barrier. When retinal hypoxia becomes more severe, 
the eye's natural defense mechanisms kick in, trying to 
compensate by giving tissues more oxygen. Venous 
anomalies, such as venous dilatation, loops, and 
beading, are indicative of increasing hypoxia and are 
almost always observed in the vicinity of regions with 
retinal ischemia, often referred to as capillary non-
perfusion. The best indicator of the onset of PDR is 
the existence of venous anomalies [15]. New blood 
vessels begin to form when retinal ischemia continues, 
causing the extracellular matrix to break down. It is 
known that the proliferative stage of DR is 
characterized by neovascularization.  
Neovascularization or the organizing already-existing 
capillaries by proliferation within the retinal tissues to 
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give a new path via non-perfusion zones are examples 
of intraretinal microvascular abnormalities [15]. 
Patients with proliferative DR may experience severe 
visual impairment by tractional separation of the retina 
or by rupture of aberrant arteries into the vitreous 
(vitreous hemorrhage). Numerous of these 
abnormalities could be involved in the vision loss 
brought on by DR. Firstly, macular edema, which is 
defined as thickening or enlargement of the macula, 
can impair central vision. The collapse of the blood-
retinal boundary leads to a buildup of fluid in the 
macula, which is what causes this swelling. Second, 
proliferative DR's new blood vessels and the fibrous 
tissue that surrounds them can contract, distorting the 
retina and causing tractional retinal detachment a 
condition that results in severe and frequently 
irreversible visual loss. Third, there's a chance that the 
newly formed blood vessels can bleed, which could 
result in vitreous or pre-retinal hemorrhage. The 
clinical avenues for vision loss depicted in Figure (1) 
include damage to retinal neurons in addition to these 
clearly visible vascular alterations. 

 
Figure (1): A patient with DR (right) and a healthy 

patient (left) experiencing the same eyesight [17]. 

1.2. DR grading 
DR severity levels are determined by DR grading, 

which evaluates vascular alterations. Many DR grading 
protocols are currently available, such as the Scottish 
DR grading protocol [18], the International Clinical 
Diabetic Retinopathy Severity Scale (ICDRSS) [19], 
the Early Treatment Diabetic Retinopathy Study 
(ETDRS) classification [19], and the International 
Clinical Diabetic Macular Edema Severity Scale 
(ICDMESS) [20]. Despite the fact that the ETDRS 
grading system is thought to be the best, daily 
professional and enormous amounts grading are still 
challenging because of its intricate implementation and 
multiple levels. The ICDRSS, created by the Global 
DR Project Group, has garnered significant attention 
in therapy and computer-aided diagnostic (CAD) 
environments across the globe because of its 
practicality and ease of use. The five DR severity levels 
that the ICDRSS classifies DR into are no DR, mild 
NPDR, moderate, NPDR, severe NPDR, and PDR, as 
shown in Figure 2 [19]. Five phases are used by the 
World Health Organization (WHO) to classify DR 
[21]:  

DR is absent. As of now, no sickness is visible. 
1. Retinopathy from mild diabetes. Early in the 
course of the disease, microaneurysms are tiny patches 
of microscopic blood arteries or balloon-like swelling 
in the retinas. The retina may see fluid leakage from 
these microaneurysms, refer to this as capillary leakage.  

2. Moderate Retinopathy Due to Diabetes. The 
retinal blood supply may enlarge and warp as the 
condition worsens. They might also stop being able to 
move blood. Both disorders result in distinct 
alterations to the retina's appearance, may exacerbate 
macula enlargement, and may also increase blood or 
exudate leakage from capillaries. 
3. Severe Retinopathy Due to Diabetes. Several 
additional blood vessels are obstructed, which results 
in parts of the retina losing blood flow. The term 
"capillary non-perfusion" describes this. Growth 
factors released from these regions instruct the retina 
to produce newly formed blood vessels.  
4. DR with Proliferation. New blood vessels begin 
to proliferate at this advanced stage due to capillary 
non-perfusion. These blood vessels grow into the 
vitreous gel, which fills the eye, and along the inner 
side of the retina. Because of their fragility, the young 
blood vessels are more likely to have capillary leakage. 
Retinal detachment, or the ripping of the retina from 
underlying tissue, can result from accompanying scar 
tissue contracting. A retinal detachment may result in 
irreversible eyesight loss. 

 
Figure (2): ICDRSS DR grading. (NPDR: Non-
proliferative DR; PDR: Proliferative DR) [19]. 

The main out lines of this review are organized as 
follows: section 1. introduction that showed general 
description on DR ocular disease with the disease bio-
marks and grading. Section 2 showed the methodology 
of this paper. Section 3 provides a description of the 
publicly available datasets with their characteristics. 
Section 4 included general description of the common 
preprocessing technique for fundus image 
enhancements. Section 5 generally explorer the most 
frequently used DL model with either binary or multi-
class classification of DR fundus images with some of 
the limitations. Finally, section 6 summarized the main 
conclusions points of this review. 

 

2. Research Methodology 
Related papers were searched for 105 papers 

published from 2018 to 2023 through Web of Science, 
PubMed, Scopus, and IEEE Xplore using the terms 
‘‘artificial intelligence’’, ‘‘deep learning’’, ‘‘diabetic 
retinopathy’’, ‘‘classification’’, ‘‘detection’’, and 
‘‘grading’’. After removing because of it was written in 
other languages or insufficient data …ect.; and 
determining the specific DL tasks for DR, final 81 
articles were carefully included. In contrast to previous 
publications, the main methods of this work could be 
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described as follows: First, an overview was presented 
by showing extensive data preprocessing methodology 
as well as the most recent works in the field of DR 
classification employing DL approaches over the last 
three years. The article discusses databases, DL 
models, and the performance of approaches such as 
binary classification for DR diagnosis and multi-
classification for DR grading. 

 

3. Publicly available DR Datasets: 
One of the main factors contributing to the success 

of DL research is datasets, which are collections of 
data that can be utilized to train and test DL models. 
Nevertheless, significant dataset collection and high-
quality, accurate labeling in the field of fundus images 
are difficult to achieve. One factor is that obtaining 
and disseminating medical data is challenging due to 
privacy protection of personal information. 
Furthermore, inconsistent image standards and quality 
are caused by a variety of fundus imaging instruments 
and settings, imaging properties, and operators. In 
addition, qualified ophthalmologists frequently carry 
out picture tagging. Here, a brief overview was 
provided [22] of a number of fundus image datasets 
for DR classification that are freely accessible, as 
indicated in Table 1. The earlier review articles 
contained far more thorough information. The fact 
that photos were taken using various cameras and 
under various imaging settings means that this dataset 
has an adequate variety of real-world scenarios. 

Table (1): Popular open-source databases for DR 
classification. 

Year Dataset Country Size Resolution Tasks 

2004 MESSIDOR 
[23] 

France 1200 2304x1536 
2240x1488 
1440x960 

DR 
grading 

2007 DIARETDBI 
[27] 

Finland 89 1500x1152 DR 
grading 
lesion 

detection 

2009 Kaggle 
EyePACS [24] 

United 
States 

88702 Varying DR 
grading 

2010 MESSIDOR2 
[26] 

France 1748 1440x960 
2240x1488 
2304x1536 

DR 
grading 

2012 HEI-MED 
[28] 

United 
States 

169 Varying DR 
grading 
lesion 

detection 

2013 E-Ophtha [29] France 463 2544x1696 
1440x960 

DR 
grading 
lesion 

detection 

2013 DRiDB [30] Croatia 50 768x584 DR 
grading 
lesion 

detection 

2017 IDRiD [31] India 516 4288x2848 DR 
grading 
lesion 

detection 

2019 Kagge 
APTOS 2019 

[25] 

India 5590 Varying DR 
grading 

2019 DDR [32] China 13673 Varying DR 
grading 
lesion 

detection 

 

4.Pre-processing of Data:  
Preparing structured raw data that the algorithm 

can accept is a frequent first step in DL research, and 
it can improve the training efficiency of DL models. A 
variety of image quality problems (including size, 
noise, artifacts, contrast, lighting, and sharpened 
regions) might arise while capturing fundus images 
with different cameras and settings. During the DL 
model training process, these heterogeneities could 
conceal certain unique aspects of the DR features. As 
shown in Table 2, the primary operations performed 
on the fundus images were image enhancement, 
denoising, normalization, and augmentation. 
Table (2): A preliminary processing of DR data for 

classification. 

Preprocessing 
approaches 

Methods Role 

Image 
enhancement 

Contrast enhancements: 
Histogram equalization 
(HE), 
Adaptive Histogram 
equalization (AHE), 
Contrast limited Adaptive 
Histogram equalization 
(CLAHE). 

To enhance 
the original 
fundus 
images 
appearance 
and important 
information. 

Illumination correction: 
Gamma correction, 
Logarithmic correction 

Color space 
transformation: 
HIS color space 
conversion, HSV color 
space conversion, 
Grayscale, Green 
channel. 

Generative Adversarial 
Network (GAN) based 
method: 
Cycle GAN, Cycle-
CBAM. 

Denoising and 
Normalization 

Denoising: 
Median filtering, Mean 
filter, Gaussian filtering, 
Wiener filter. 
Normalization: 
Intensity normalization. 

To remove 
potential 
noise of 
image and 
avoid features 
biasness. 

Image 
augmentation 

Geometric 
transformation: 
Rotating, shifting, 
rescaling, cropping, 
flipping. To increase 

the size of 
training data 
and avoid 
overfitting 

Color transformation: 
Brightness 
transformation, contrast 
transformation, color 
space transformation. 

GAN-based image 
generation. 

 

6. DL Related Model for DR 
Classification: 

An incredible history of image processing and 
interpretation, including clinical imaging, has been 
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achieved by convolutional neural networks (CNNs), 
one sort of DL technology. CNNs learn extremely 
abstract characteristics in training images using labeled 
data, and these features are subsequently utilized to 
construct a classification model. When a substantial 
amount of tagged picture data is available, image 
classification tasks are best suited for this type of DL. 
The grade given by the clinicians might serve as the 
picture label in the setting of DR. This grading will 
then be used to train the CNN to diagnose DR. After 
training, the CNNs can forecast images that haven't 
been seen before. First CNNs were developed with 
significant help from the backpropagation algorithm. 
The LeNet-5 CNN architecture was first introduced in 
a significant milestone, the LeCun et al. publication 
from 1998 [33]. The layers of this architecture, which 
are still utilized in neural networks, include completely 
connected layers and activation functions. However, 
convolutional and pooling layers are two additional 
layers that set it apart from a standard neural network 
at the time. In handwritten character recognition, this 
enabled CNNs to outperform other automated 
methods. The amount of computing required and 
complications like the vanishing gradient problem 
meant that CNNs could not, regrettably, scale to larger 
problems. As a result, Support Vector Machines 
(SVMs) were the preferred approach for computer 
vision research in the 1990s since they appeared to 
provide superior outcomes and more robust 
theoretical underpinnings [34]. Not until 2006, when 
Geoffrey Hinton released a paper titled "deep belief 
nets," was the phrase "deep learning" first used [35]. 
Because interconnected layers of perceptrons allows 
for the learning of more abstract features, the research 
of neural networks has become known as "deep 
learning". Using this technique, people could train 
neural networks that were deeper and had more layers 
than perceptrons. DL saw an exponential increase in 
attention when it eventually produced groundbreaking 
results on speech recognition tasks in 2012 [36], after 
its newly discovered feasibility rekindled interest in the 
discipline. During that year, Geoffrey Hinton and his 
team of researchers would present their best 
algorithms of DL for the popular ImageNet Large 
Scale Visual Recognition Challenge (ILSVRC), that 
sought for identify photos which belong to the 
ImageNet dataset [8]. DL has been able to improve 
image classification problems due to advances in 
theory, the use of GPUs, and the availability of massive 
labelled datasets. Websites like Kaggle are making 
more public data available for analysis [37], and the 
viability of analyzing this data has increased [38]. These 
improvements have allowed neural networks 
particularly and DL in general, better suited for 
complicated computer vision tasks. CNN 
architectures were investigated as a result of the 
groundbreaking CNN AlexNet, which Krizhevsky et 
al. [8] introduced to the machine learning community 
in 2012. With the introduction of the backpropagation 
technique and the growing GPU power, CNNs could 
now use more than just a few hidden layers. Above all, 

CNNs were no longer as vulnerable to the vanishing 
gradient problem after being trained by the gradient-
based learning method [38]. The creation of AlexNet 
and other benchmarking CNN designs, such as VGG 
[38], laid the groundwork for CNN research to handle 
progressively difficult computer vision applications. 
These days, CNNs are frequently employed in 
numerous cutting-edge image classification 
applications [39, 40, 41, 42]. Given that CNNs have 
continued to develop and become increasingly 
effective in recent years, research in this area is still 
relatively young. The ideal architectures and hence, the 
layering for computer vision applications is still up for 
debate among researchers. Increasing depth has been 
the main emphasis of CNN model development in an 
effort to increase classification accuracy. There seems 
to be a direct correlation between improving accuracy 
and layer depth (Table 3). 
 Table (3): The key features of some CNN models. 

Model input 
Size 

trainable 
(pixels) 

Parameters 
(millions) 

Layers 
count 

AlexNet 256x256 60 8 

VGG 224x244 2.5 19 

GoogLeNet 244x244 12 22 

InceptionV3 299x299 23.8 159 

 
Overfitting, though, could result from the depth 

and parameter increases [43]. In addition to being 
generalizable to different datasets, the architecture of 
the VGG has demonstrated resilience against 
overfitting [44]. Longer training periods and increased 
processing power are also necessary because to the rise 
in layer depth and parameters. Because of the 
convolution layers' nature, the architectures' 
parameters grow exponentially with the size of the 
image. Table 4 presents a summary of popular 
architectures. Summaries of the most frequently 
employed DL algorithms for binary and classification 
of multiple classes may be found in Tables 5 and 6, 
respectively.  

Even with impressive progress, DL in DR 
classifications still faces numerous obstacles. Initially, 
there is a deficiency of more efficient labeled data. The 
data utilized for DR classification at the moment are 
primarily taken from publicly available databases, and 
the majority of them only cover one ethnicity or the 
target condition, making it impossible for them to 
accurately represent people's varied ethnic 
backgrounds as well as real clinical status. One typical 
issue with several public databases is insufficient data, 
or there may be imbalances across classifications. In 
clinical practice, labeling and grading consistency can 
be challenging to get. Achieving appropriate labeling 
and grading in clinical practice can be difficult at times. 
Secondly, it is challenging to analyze DL models for 
clinical use. DL models, which use multi-layer non-
linear structures to extract visual characteristics for 
recognition and classification, are often criticized for 
their lack of transparency.  

Table (4): Frequently utilized DL algorithms in DR classification. 

DL techniques Architectures Strength Weakness Ref. 
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CNN and 
related models 

AlexNet ReLU activation function; overlap pooling: data 
augmentation and dropout to avoid overfitting 

Larger number of parameters (60 
million); be appropriate for handling 
basic and small data issues on 
average hardware. 

[45-47] 

VGGNet Same small sized kernels to increase the depth of 
the network to improve the final performance. 

Larger number of parameters (138-
180 million); high computational 
cost. 

[48, 53, 
54, 55] 

GoogLeNet 
(Inception 
V1) 

Inception model to extract features at different 
scales to increase the 1x1 convolutional kernels 
for dimensionality reduction reduces the 
computational complexity 

Lager number of parameters (5 
million); heterogeneous topology 
between the inception blocks. 

[45, 46, 
51] 

Inception V3 Factorization using 1xn and nx1 convolutional 
kernels instead of nxn kernels to diminish 
representational bottleneck; RMSProp optimizer 
to accelerate the training. 

[56, 49-
51, 57] 

Inception V4 Reduction blook for pooling data [58, 59] 

ResNet Residual block with a shortcut connection to 
reduce parameters and accelerate training 
convergence 

High computational cost and 
requires more powerful hardware 
support. 

[52, 60, 
61] 

Inception 
ResNet 

Inception v3 or v4 combines with residual 
connection to improve computational efficiency 

Accuracy is not significantly 
improved 

[62, 63] 

 
Table (5): A list of the main DL models based on binary DR classification. 

Target class Dataset  DL model 
Model performance Year  Ref. 

Accuracy  Sensitivity  Specificity    

 Any DR/ No DR   EyePACS VGG16  - 93%  85%  2018  [64] 

 PDR/ Non PDR  EyePACS  WP-CNN  94.23% 90.94%   95.74%  2019 [65] 

 Any DR/No DR  MESSIDOR-1  CNN  - 90.4%  91.0%  2020  [66] 

 Any DR/No DR   
MESSIDOR-1, and 

APTOS 2019  
Pre-trained Inception- 

ResNet-V2  
82.18%   - -  2020  [67] 

Sever DR/ Non-sever DR  APTOS 2019  Inception V3  -  92.5%  90.7%  2022  [50] 

Any DR/ No DR  DRR   pre-trained ResNet 18 - 86.53%  86.72%   2022 [68] 

Any DR/ No DR  APTOS 2019   CNN  94.6%  86%  96%  2022 [69] 

Any DR/ No DR  
EyePACS and 
APTOS 2019 

LB CNN based on  
ResNet 18 

97.4% 94.6% 96.6% 2022 [70] 

Any DR/ No DR  APTOS 2019 
DenseNet169 and 

convolutional block 
attention module 

97% 97% 98.3% 2022 [71] 

 
Table (6): A description of the main DL models using multi-class DR classification. 

Target class Dataset  DL model 
Model performance Year  Ref. 

Accuracy  Sensitivity  Specificity    

4 classes: Normal, 
and Non PDRs. 

EyePACS-1, MESSIDOR-
2, and DIARETDB0  

Pre-trained VGG16  96.6% - - 2022 [72] 

5 classes: Normal, 
Non PDRs. 

APTOS 2019, 
MESSIDOR -2 

Supervised learning with 
Xception encoder 

84.36% -  - 2022 [73] 

5 classes: Normal, 
Non PDRs. 

APTOS 2019 
Ensemble method based on 
pre-trained VGG16 VGG19 

87% - - 2022 [74] 

4 classes: Normal, 
and Non PDRs. 

MESSIDOR, STARE and 
DRIVE 

Deep LSTM-RFO algorithm 97.89% 98.47% 97.43% 2022 [75] 

5 classes: Normal, 
Non PDRs and PDR. 

Kaggle DR 2015 and 
APTOS 2019 

PCNN 97.27% - - 2023 [76] 

5 classes: Normal, 
Non PDRs and PDR 

Kaggle  Revised ResNet50 74.32% - - 2023 [77] 

5 classes: Normal, 
Non PDRs and PDR 

APTOS 2019 Tripple- DRNet 92.08% - - 2023 [78] 

5 classes: Normal, 
Non PDRs and PDR 

APTOS 2019 and DDR 
DenseNet-121- rendered 

model 
98.36% - - 2023 [79] 

5 classes: Normal, 
Non PDRs and PDR 

IDRiD SqueezeNet and DCNN 91.1% 89.8% 91.3% 2023 [80] 



NJES 27(2)155-163, 2024 
Sadek, et al. 

161 

5 classes: Normal, 
Non PDRs and PDR 

APTOS 2019 and 
EyePACS 

MobileNet V3-Small 98.4% - - 2023 [81] 

 
The exact process of architecture and its clinical 

implications were not fully understood. Third, the DL 
used in clinical practice involved ethical constraints. 
Errors in diagnostic results utilizing DL approaches 
remain unclear. Even with impressive progress, deep 
learning in DR classifications still faces numerous 
obstacles. Initially, there is a deficiency of more 
efficient labeled data. The data utilized for DR 
classification at the moment are primarily taken from 
publicly available databases, and the majority of them 
only cover one ethnicity or the target condition, 
making it impossible for them to accurately represent 
people's varied ethnic backgrounds as well as real 
clinical status. One typical issue with several public 
databases is insufficient data, or there may be 
imbalances across classifications. In clinical practice, 
labeling and grading consistency can be challenging to 
get. Achieving appropriate labeling and grading in 
clinical practice can be difficult at times. Secondly, it is 
challenging to analyze DL models for clinical use. DL 
models, which use multi-layer non-linear structures to 
extract visual characteristics for recognition and 
classification, are often criticized for their lack of 
transparency. The exact process of architecture and its 
clinical implications were not fully understood. Third, 
the DL used in clinical practice involved ethical 
constraints. Errors in diagnostic results utilizing deep 
learning approaches remain unclear. 

 

6. Conclusion: 
Our paper summarizes current developments in 

fundus image-based DL classifications research. 
Important outcomes can be attained. First, it is 
commonly acknowledged that transfer learning is an 
excellent way to address the issue of not having 
enough data samples available for model training. 
There are numerous pretrained networks accessible to 
support DR analysis thanks to transfer learning 
techniques. Improved training time and robustness of 
the model are achievable. Using features from the 
model that has already been trained can improve the 
model's resilience and training time. The most often 
used datasets for DR classification are EyePACS and 
APTOS 2019. Third, two lightweight DL 
architectures, SqueezeNet and MobileNet, have been 
presented for data-restricted and computationally-
intensive DR classification problems. With these 
architectures, complex image processing parameters 
can be reduced dramatically without sacrificing model 
accuracy. Though human accuracy in the diagnosis and 
assessment of DR cases has been achieved by DL, real-
world clinical processes are still a long way off. Further 
developments are required in the areas of the model's 
interpretability, the affordability and dependability of 
DR screening techniques, and the credibility of 
ophthalmologists. 
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