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Abstract 
Mobile robots use simultaneous localization and mapping (SLAM) 

techniques for generating maps of unknown environments through 

navigating its. In this work, firstly SLAM technique was considered based 

on extended Kalman filter (EKF) which it was implemented and evaluated 

at unknown environments with different number of landmarks to estimate 

mobile robot’s position and build a map for navigated environment at the 

same time. Then, the detectable landmarks will play an important role in 

controlling the overall navigation process as well EKF-SLAM technique’s 

performance. After that, three intelligent optimization algorithms are 

proposed to enhance the performance of the EKF-SLAM trajectory for 

the mobile robot, these algorithms are: particle swarm optimization (PSO), 

chaotic particle swarm optimization (CPSO) and genetic optimization 

(GA). MATLAB simulation results show that CPSO algorithm 

outperforms PSO and GA algorithms in terms of minimizing the mean 

square error (MSE1) with increasing the number of landmarks, where 

MSE1 is the mean square error of EKF-SLAM according to the actual 

trajectory. The simulation results show also the performance of EKF-

SLAM trajectory is better than the performance of the Odometry trajectory 

and becomes best with using intelligent optimization algorithms. 

Keywords: Mobile Robot, EKF-SLAM, PSO, GA, CPSO. 

للروبوت المتنقل في بيئات غير معروفة باس تخدام تقنيات التحسين التنقل الأمثل 

 المختلفة 
 ضياء جاسم كاظم ،  الرضا ساره حيدر عبد

 الخلاصة: 

( المتزامنة  الخرائط  ورسم  التوطين  تقنيات  المتنقلة  الروبوتات  غير  SLAMتس تخدم  لبيئات  خرائط  لإنشاء   )

(  EKFالمعتمدة على مرشح كالمان الممتد )  SLAMمعروفة من خلال التنقل فيها. في هذا العمل، قمنا أأولً بدراسة تقنية  

والتي تم تنفيذها وتقييمها في بيئات غير معروفة ذات عدد مختلف من المعالم لتقدير موقع الروبوت المتنقل وبناء خريطة  

في عملية الملاحة  في التحكم  مهمًا  س تلعب المعالم القابلة للاكتشاف دورًا  بعد ذلك،  في نفس الوقت.  للبيئة الملاحية 

. بعد ذلك، تم اقتراح ثلاث خوارزميات تحسين ذكية لتعزيز أأداء مسار EKF-SLAMالشاملة وكذلك أأداء تقنية  

EKF-SLAM   للروبوت المتنقل، هذه الخوارزميات هي: تحسين سرب الجس ( يماتPSO  تحسين سرب الجس يمات ،)

 ( ) CPSOالفوضوية  الجيني  والتحسين   ،)GA  محاكاة نتائج  أأظهرت   .)MATLAB    خوارزمية تتفوق    CPSOأأن 

 MSE1( مع زيادة عدد المعالم، حيث MSE1من حيث تقليل متوسط مربع الخطاأ ) GAو PSOعلى خوارزميات 

لـ   الخطاأ  مربع  متوسط  مسار    EKF-SLAMهو  أأداء  أأن  أأيضًا  المحاكاة  نتائج  أأظهرت  الفعلي.  للمسار  -EKFوفقاً 

SLAM  أأفضل من أأداء مسارOdometry  .ويصبح أأفضل باس تخدام خوارزميات التحسين الذكية 

1. Introduction  
Mobile robots play important roles in new life 

requirements according to their capabilities and skills 
in several fields such as salvage search in diverse spaces 
environments, review of Mars or examine of the sea 

deepest and several other fields, they have confirmed 
their aptitudes to traverse in unknown environments.  
So, the navigation is the main challenge for mobile 
robots and it has much research care in recent years. 
The navigation means that the robot should transfer in 
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an environment without colliding landmarks and 
obstacles, estimate the robot pose itself and then build 
a map of the environment where it transverses [1].  

Navigation can be defined as a collection of self-
localization, path planning, and map building issues. 
The simultaneous localization and mapping (SLAM) is 
an energetic study area in mobile robotics [2] and has 
added growing care over the last two decades. The job 
of the SLAM mechanism is to build a map of an 
unknown environment whereas estimating the 
position of the robot according to this map. Since the 
robots’ tracks and maps are together unknown and 
also the measurements that read from the sensors of 
the robot are continuously having noise and 
uncertainties in its locating created by the motion of 
the robots. Consequently, these errors of the robot’s 
track and map are needed to estimate and correlated 
[3]. To enhance the robot’s navigation numerous 
approaches occur to address these problems including 
classical methods such as Particle Filters (PFs) [5] and 
Kalman Filters (KFs) [6] which they are used to 
compute combined later distributions over robot 
position and landmarks. These solutions came out 
with numerous improvements and developments in 
have been designated methods such as Rao 
Blackwellized Particle Filters (RBPFs) and Extended 
Kalman Filters (EKFs). Furthermore, there is another 
solution approach such as graph-based algorithms as 
in [7]. While for stochastic nonlinear systems, the main 
solution is to suggest using the EKF approach as in 
works [8][9]. 

 However, our work will consider the estimation 
performance degradation with EKF SLAM which is 
mainly caused by the effecting of the noise covariance 
matrices measurements Q and R, which have a direct 
impact on the EKF SLAM process. Generally, these 
noise matrices were firstly adjusted in traditional ways 
such as using trial and error approaches where they are 
considered very boring approaches. Therefore, several 
intelligent optimization algorithms had been proposed 
to enhance the performance of EKF SLAM based on 
the position estimation of mobile robots. In recent 
years, because of the robust and ability to the 
simultaneous calculations, a number of intelligent 
approaches, like particle swarm optimization 
algorithm (PSO), genetic algorithm (GA), and fuzzy 
logic (FL) algorithm are proposed to solve the 
navigation problems in robotics. 

Authors of [1] proposed suitable solutions for 
optimizing the navigation of a mobile robot in 
unknown environments using the PSO technique 
which examines the solution of space discovery with 
the proper minimum error value. At [10], Fuzzy based 
EKF was proposed to deal with the study of diverse 
Fuzzy membership form performance for Extended 
Kalman Filter (EKF) based mobile robot navigation to 
determine the best estimation results for mobile robot 
and landmarks locations. With [11], a new optimal 
filter technique genetic algorithm based fuzzy logic 
(GA-FL) controller was established in its work 
environment founded on extended Kalman filter 
(EKF) to enhance the precision of the localization 
problem in mobile robot and improve the 
performance of robot localization. In [12], a novel 

optimal filter named the fuzzy neural network based 
EKF (FNN-EKF) was proposed to enhance the 
precision and convergence of the EKF by controlling 
the noise covariance matrices Q and R for the problem 
of localization in an unknown indoor environment. In 
[13], a fuzzy extended Kalman filter (FEKF) technique 
was proposed and compared to the EKF technique 
that it had shown that FEKF had better results than 
EKF and can be further improved if better rules 
designs are provided. Authors of [14] proposed a 
particle swarm optimization (PSO) as an alternative 
approach for the optimization of the covariance 
matrices Q and R since the PSO algorithm were used 
a particle collaboration to find the best result. So, our 
work will consider the PSO algorithm which is an 
optimization method established by James Kennedy 
and Russell Eberhart in 1995 [15]. PSO has been used 
to enhance the precision of the position of the mobile 
robot pose estimation. The second optimization is 
chaotic particle swarm optimization (CPSO) which is 
the optimization of the swarms of chaotic particles 
proposed in this study since it improves the global 
search and can achieve the optimal solution with a 
minimum number of iterations, which depends on the 
probabilities of chaotic techniques and not on 
stochastic techniques [16][17]. For performance 
evaluation purposes, the Genetic algorithms is 
suggested to apply where it is often used to generate 
high-quality solutions of optimization and research 
problems using bio-inspired operators such as 
mutation, crossing, and selection [18].  

The work of this research has been implemented 
in two steps: firstly, the EKF-SLAM algorithm was 
implemented and simulated to estimate the robot 
position and build a map at the same time and 
comparing the EKF-SLAM trajectory with Odometry 
trajectory. In the second step,  the EKF-SLAM 
technique is improved by using three different 
intelligent optimization techniques: PSO, CPSO and 
GA which also they were implemented and simulated 
to optimize the navigation at unknown environments. 
The main contributions come with this research work 
are: (1) testing EKF-SLAM algorithm for different 
unknown environments that contain different 
numbers of landmarks; (2) Enhancing and evaluating 
the performance of EKF-SLAM technique by using 
PSO, CPSO and GA where the detectable landmarks 
will play an important role in controlling the overall 
navigation process as well EKF-SLAM technique’s 
performance. 

 

2. Mathematical Model 
To derive the mathematical model proposed for 

EKF-SLAM, firstly a diagram for the mobile robot 
was considered that moves with an angle (α ) where it 

is the orientation of the mobile robot from the center 

of rotation, while (𝒘) defines here as the width of the 

mobile robot while (𝒖𝒕)  is the control unit which 

equal to the left and right control movements (𝒍 and 

𝒓) of the mobile robot, The motion model can be 
expressed according to this condition of the left and 
right control movements. The situation of mobile 

robot when (𝒓 ≠ 𝒍) is shown in Fig. 1 and the situation 
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of mobile robot when (𝒓 = 𝒍) is shown in Fig. 2. The 
parameter is clearly from Fig. 1 below:  

-
  ,   
r l l

R
w




= =       ...(1) 

whereα is the radius of mobile robot. Firstly, suppose 

(𝒍 ≠  𝒓), as shown in Fig. 1. and then the following 
new position state was produced by: 
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While if 𝒓 ≠ 𝒍 as shown in Fig. 2. the following new 

state as the following Eq. 3 where α=0  
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Figure (1): The situation of mobile robots when 

(𝒓 ≠ 𝒍). 

 
Figure (2): The situation of mobile robots when 

(𝒓 = 𝒍). 
where (  , , )x y  is the nonlinear robot position. 

Then, Extended Kalman Filter (EKF) was proposed 
to use as a filter in our study. So, EKF uses first-order 
Taylor series extension to grasp the linearization of 

nonlinear for both state (
tx )and observation (𝒁𝒕) 

expressions since it can be expressed by mean )(  t  

and covariance )(  t  .Now, the new state of the above 

state is the next state probability and then the 
measurement probabilities are ruled by nonlinear 
functions g and h respectively as in the following Eq. 
(4). 

( )-1,t t t tx g x u = +       ...(4) 

where )(  xt  is the robot position and it is state vector 

of ( )  , ,  x y   where g is non-linear function and   t  

is the Gaussian random vector that models the 
randomness in the state transition. It is the same 
dimension of the state vector. Its mean is zero and its 

noise covariance will be denoted by  Rt  . 

2.1 EKF Prediction Stage 
The prediction stage can be expressed by mean 

and covariance as the following: 

( )-1,t t t tx g x u = +       ...(5) 

By take the partial derivative of nonlinear function 
g and according to the condition of left and right 

control, when 𝒓 ≠ 𝒍 the Jacobian matrix is: 
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2.2 EKF Correction Stage 

The observation expression zt can be described as 

the following: 
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0
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The distribution of δ t is a multivariate Gaussian 

with zero mean and covariance Qt . So, Firstly to 

illustrate the nonlinear function h, the mobile robot 
was assumed stands in the location at the origin point

( ),x y while the laser scanner stands at the laser point 

( )  , yxe e which was shown in Fig. 3 below : 
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The laser scanner was observed a landmark which 

locates at the point ( ,m mx y ). 

( ) ( ) ( ) ( )
222 2

- - ,q x x y ym e m e x y
= + + =

            …(10) 
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Figure (3): The movement of the robot when 
observed a landmark by a sensor. 
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Then, the observation function ˆ
tz can be defined 

as a vector that equal to nonlinear function h. 

( ), ,ˆ
t

q
z h x y 



 
= 

 
=                       …(12) 

Then, the partial derivative of h was taken with 

respect to ( , )q  to obtain the Jacobian function: 
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Now, the Kalman gain   tK  was computed as: 
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1
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 tQ is noise covariance. Finally, the mean and 

covariance of the correction stage are produced as 
follows: 
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3. Proposed EKF-SLAM Technique 
An Extended Kalman Filter was adopted in solving 

the SLAM problem, and the process of EKF-SLAM 
technique will be also described by two stages as 
follows: 

3.1. EKF-SLAM Prediction Stage 
The dimension of EKF-SLAM is considered to be 

(2n+3). So, to map the nonlinear function g according 
to the dimension (2n+3) space, the state of the mobile 
robot will change but the states of landmarks are not 
changed. Now, to compute the Jacobian matrix   tG and 

again according to the conditions of mobile robot 
movement, the Jacobian matrix for the following two 
cases were obtained: 
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Finally, the mean and covariance of the prediction 

step of EKF-SLAM are computed according to the 
previous procedures described above. 
 

3.2.    EKF-SLAM Correction Stage  
One landmark was assumed which situates at the 

position ( , )m mx y which was observed by the robot 

and computes the Jacobin function for one landmark 

which is denoted byH
l

according to individual state 

vector. 
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Now, to obtain the Jacobian function 

tH for high 

dimensional space of EKF-SLAM for n landmarks by 

multiplying the new matrix  Fx with previous H
l

as 
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                            …(19) 
 

Then, the Jacobian of observation function for 
high dimension was determined by: 

 t l xH H F=    (20) 

Finally, both mean and covariance for the 
correction stage of EKF-SLAM are computed by: 

( )( ) ( )and tt t t t t t t tK z h I K H  = −  = −     (21) 

The proposed EKF-SLAM technique is simulated 
and tested in MATLAB software for different number 
of landmarks. There are three cases of trajectories of 
the mobile robots are considered: Actual trajectory 
(ground truth), Odometry robot trajectory (dead 

reckoning) and EKF-SLAM trajectory (estimated trajectory). 
Now, because of the circular features of the proposed 
environment with different number of landmarks, there is an 
intersection among the measurements that get from run the 
simulation so it is difficult to see the location of these three 
cases at each time instance. So this causes inability to notice 
the efficiency and performance of the proposed EKF-SLAM 
technique. Therefore, it was needed to determine the 
distance error between the actual trajectory to Odometry 
robot trajectory denoted by (D1) and distance error between 
the actual robot trajectory to EKF-SLAM robot trajectory 
denoted by (D2) as follows: 

( )
2 2

      (     )
1

x x y yD estimate actual estimate actual
= − + −  

(22
) 

( )
2 2

        (     )2 y yD x xodo actual odo actual
− −+=  

(23
) 

where,

( ), ),( , )(, ,y x y yX xactual odoactual estimate estimate odo

points are defined as the coordinates of the actual robot 
position and estimated robot position as well as the 
Odometry robots position. To study the effectiveness of 
increasing the number of landmarks on the performance of 
both EKF-SLAM and Odometry trajectories, the mean 
square error for both previous distance errors D1 and D2 
were determined by MSE1 and MSE2 respectively. MSE1 is 
the mean square error of the distance error between the 
actual robot trajectory to EKF-SLAM robot trajectory, and 
MSE2 is the mean square error of the distance error between 
the actual robot trajectory to Odometry robot trajectory, the 
expressions of these two metrics are given by: 

     1  2 
1 2

,

1 1

k k

MSE D MSE D

i i

= = 
= =

 (24) 

The number of robot locations is denoted by 𝑘. 
Three groups of experiments are tested in MATLAB 
with a different number of landmarks. According to 

Map for Hl  2j-2 2N-2j 
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following expressing, the performance of EKF-SLAM 

which it is denoted by 𝑃𝑒𝑟𝑓. 1  and Odometry 

performance which it is denoted by 𝑃𝑒𝑟𝑓. 2  were 
computed by:      

( ) ( ).1 1 1 100, .2 1 2 100Perf MSE Perf MSE= −  = −   (25
) 

 

4. Optimization Techniques  
At first, the PSO is proposed as an optimization 

technique. It is the method was built on the 
conductance of a swarm or colony of bugs with no 
spearhead, such as ants, bees, the herd of birds and a 
group of fish. So, the word particle means a bird in a 
group. Each particle in the swarm depending on its 

personal experience denoted by (𝑃𝑏) and the group 

experiences denoted by (𝐺𝑏). If a particle finds out a 
good path to the food then, the other particles in the 
swarm can also follow the good path quickly. It is 
presumed that the swarm or group is of a specified size 
denoted by Swarm Size and each particle has a random 
position in the plan space. The method of PSO 
represents a random search for finding the maximum 
or minimum value of the cost objective function until 
slowly and after several iterations that all birds in a 
swarm go to the optimal value and based on the 
following equations [19]. Where the particle has two 

features, position (𝑋𝑝𝑜𝑠) and velocity (𝑉𝑒). 

1
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(26
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, , ,

n n
Xpos Xpos Vei j i j i

n

j

+ +
= +    (27

) 

In Eq. (26) 
,Pbi j
n  characterizes the personal best 

thj component of individual, while Gb j
n represents

thj  component of the finest individual of the 

population up to iteration. The different steps of PSO 

are as follows [20]. There are different steps of PSO 
procedures are as follows: 
1. Established the constraint (C1 and C2

 
) of PSO 

which are the acceleration factor of PSO, and (

w
min

, w
max

,) is then defined as the max and 

min weight and 𝑟𝑑1 𝑎𝑛𝑑 𝑟𝑑2  are the random 
numbers. 

2. Prepare the inhabitance of the particles with X 
positions and V velocities and start with the 
iteration count from n =1. 

3. Calculate the objective function of the particles 

denoted by ( ) , F f X ii i
n n
=  and discovery 

the index of the finest particle C1 and C2, 𝑊𝑚𝑖𝑛, 

𝑊𝑚𝑎𝑥. 

2. ,    Choise
n

b

n
Xpos i an

nn

i
d XPb i bG=  =  

and calculate the weight 𝑤𝑒 as in Eq. (28) 

( )        – n       /  w w w Maxitew
e max minmax

=  −  (28
) 

  

3. Upgrade the velocity and the position of particles 
of both previous Eqs. (26) and (27) and evaluate 

the new objective function (1 1)fn nF Xi i=+ +  

for every index 𝑖. Then discover the finest particle 

index which is denoted by 1b . 

4. Modernize (  )Pb of inhabitants for every index 𝑖 

So, when
1n

Fi i
n

F
+

 at this point 
1
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n
i
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otherwise 
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= Pb i
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Gb
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1
  1

n
F Fb b

n+


now 
1

 Gb
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= 
1

1

n

b
Pb

+
 then fixed b  equal to 

1b ,otherwise 
1

   

nn
Gb Gb

+
=  

5. While when n     , n   n  1   Maxite  = +  return to 

the previous six stage otherwise go to the next-
stage twelve and 

6. Finally typography optimal solution as ( 
 b

n

G
). 

So, the main challenge of using PSO is to enhance 
the estimations precision and convergence of the EKF 
by controlling the noise covariance matrices Q and R 
for the problem of localization in unknown indoor 
environment. Traditionally, these noise matrices were 
adjusted in using trial and error approach which leads 
to many errors in estimations. The wrong choice of 
these matrices will make the estimation result 
divergent not convergent or have huge estimate errors. 
So our work will consider this estimation performance 
degradation by using a proposed PSO-EKF SLAM 
approach which it is mainly founded to reduce the 
effecting of the noise covariance matrices 
measurements which they have direct impact on EKF-
SLAM process. Firstly let’s consider the case of 
increasing the covariance matrix Q which means 
increasing uncertainties in the mobile robot model and 
then estimation performance gain will increase. 
Secondly let’s consider the case of increasing 
covariance matrix R, which causes high noise 
measurement reading that surely leads to degrade the 
estimation performance gain. Now, in order to 
improve the estimation performance, an intelligent 
approach represented by PSO approach was 
considered to use to obtain an optimal values of the 
noise covariance matrices Q and R. So, the noise 

covariance matrices ( R t and Qt ) were implemented 

and simulated in MATLAB with dimensional matrices 
defined by 3*3 and 2×2 respectively, and they are 
supposed to be as follows: 

( )( )
( )

2
0 0

2
    . 0 0

0 0  

a

diag ab toRadian c bR t

to Radian c

= =

 
     
  

 
(29) 
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( )( ) ( )

2
02

  .
0

x
diag x toRadian eQt toRadian e

= =
 

    
 

   

(30) 

 where a, b, c, x and e, are the parameters. Their 
values are limited by upper and lower bounds 
depending on the actual value of its values before the 
optimization is done. The proposed PSO-EKF SLAM 
technique is executed in offline mode since the PSO 
algorithm needs to do numerous iterations to get 
suitable estimation values with small errors. Through 
every iteration, the PSO-EKF SLAM algorithm will be 
simulated and implemented immediately and then 
accordingly, PSO-EKF SLAM must be executed many 
times to allowance the enhancement of the parameters 
Q and R for each measurement [21]. So, the 
performance of the PSO EKF with various 
arrangements of Q and R is evaluated by using the 
MSE1 standard in Eq. (24) between the estimated 
position of EKF-SLAM and the actual positions of a 
mobile robot that explained in the simulation results 
which is used as a minimum objective function. 

( ) )
2 2

objective function ( 1        (     )

1

k

D xEst xActual yEst yActual

i

= = − + −
=

     

                              …(31) 
So, Table 1 shows the MSE1 values obtained with 

our proposed PSO-EKF method with a different 
number of iterations. After (50) iterations, the MSE1is 
reduced to be 0.14052. Simulation studies show that 
the suggested technique provides perfect estimations 
in the 50 iterations with N = 30 population size and 

acceleration factors C1 = C2 = 2, and 𝑤𝑚𝑎𝑥 =
 0.9;  𝑤𝑚𝑖𝑛.that given the optimized parameter a=0.1, 
b=0.1,c=2.5, d=8, e=27.3.  

Then, the chaotic particle swarm optimization 
(CPSO) was proposed. Here, in order to enrich the 
search behavior, the chaotic dynamics is incorporated 
into the above PSO. A well-known logistic equation is 
employed for the particle swarm optimization. The 
logistic equation is defined as follows in Eq. (32)  

Y( 1) ( )(1 ( )), 0 0 1k Y k Y k Y+ = −      (32
) 

where   is the control parameter, Y is a variable and 

k=1,2,....S , which K is represent to iteration number 
of the chaos. To calculate the new weight parameter 

( newW ) by sub the eW of the previous step. 3 in 

PSO procedure and Eq. (32) 

( 1) *Wnew Y k We= +    (33) 

To improve the overall search capability of PSO, 
the new inertia weight was needed to add to the speed 
update equation of PSO , and it became as the follows 

1

, , 1 1 ,,

2 2 ,

b

b

n
We new Vel C rand Xposi j i j i ji j

C rand Xpos
i jj

n n nVe

n n

p

G

 +
 =  +   − 
 

 
 +   −
 

   (34
) 

The chaotic particle swarm optimization was done 
in MATLAB with different iterations until it reaches 
to the minimum objective function of MSE1so Table 
2. shows different iteration with MSE1 and with 20 
iterations a minimum objective function is obtained to 
be MSE1=0.1235. So, it was found the CPSO is more 

accurate and more optimal than PSO because it gives 
minimum objective function with 20 iterations while 
the PSO gives the best objective function to be 
MSE1=0.135 with 50 iterations. to check the 
effectiveness of CPSO different numbers of 
environments that contain different landmarks are 
simulated in MATLAB to enhance the performance of 
EKF and then it was compared with PSO-EKF. 
Another technique of optimization was proposed in 
this work. The genetic algorithm (GA) is used to 
enhance the performance of EKF and for comparison 
purposes with the PSO and CPSO techniques. In the 
same way as the PSO and CPSO optimization, the 
noise covariance matrices (Q and R) were chosen as 
optimization parameters for controlling. The 
parameters that used with the GA technique are 
followed: the population size is 30; the Probability of 
exceeding is 0.8; the mutation Probability is 0.01; so, 
Table 3 shows the generation numbers with their 
corresponding MSE1 obtained by our proposed 
approach GA-EKF which show the value of MSE1 is 
decreased to 0.1531 after 50 generations. 

Table (1): MSE1 of PSO-EKF SLAM. 

Iteration MSE1 
5 0.6583 

10 0.4521 

30 0.2841 

50 0.1405 

 

Table (2): MSE1 of CPSO-EKF SLAM. 

Iteration MSE1 
5 0.5432 

10 0.3864 

30 0.2764 

50 0.1205 

Table (3): MSE1 of GA-EKF SLAM. 

Iteration MSE1 
5 0.7462 

10 0.5341 

30 0.3872 

50 0.1526 

      
Note that both CPSO-EKF, PSO-EKF give more 

accurate path estimation compared to the GA method. 
It is worthy to mention that, our CPSO-EKF method 
outperforms the PSO-EKF and the PSO-EKF 
method outperforms the EKF optimized by GA 
method see the Tables 1, 2 and 3 where the value of 
MSE1 of PSO that equal 0.14052 of 50 iterations is 
less than the value of MSE1  in GA that equal 0.1526 
with the same iteration where the MSE1 value of 
CPSO less than MSE1 values of both PSO and GA 
with 20 iteration which is equal to 0.1205 which 
supports the supremacy of our methodology. 
 

5. Results and Discussion 
 First, an environment containing one Landmark 
with a location (x, y) will be implemented in MATLAB 
and then test the impact of this Landmark on the 
performance of the EKF-SLAM and our optimization 
technique PSO, CPSO and GA as shown in Figures. 1, 
2, 3 and 4 with three cases of paths of the mobile 
robots are considered: traditional EKF-SLAM 
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trajectory and the optimization EKF-SLAM trajectory 
using the three optimization techniques, Odometry 
trajectory, and actual trajectory. 

 
Figure (1): The environment one that tested the 

traditional EKF-SLAM 

 
Figure (2): The environment one that tested the 

traditional PSO-EKF-SLAM 

 
Figure (3): The environment one that tested the 

traditional CPSO-EKF-SLAM 

 
Figure (4): The environment one that tested the 

traditional GA-EKF-SLAM 

The distance error D1 and D2 are obtained for the 
trajectories of EKF-SLAM, PSO EKF-SLAM, CPSO 
EKF-SLAM and GA EKF-SLAM as shown in 
Figures. 5, 6, 7 & 8 where MSE1 and MSE2 were 
computed for both D1 and D2 according to the 
Eq.(21) and Eq.(22). The results obtained from these 
figures in this environment are registered in Table 4. 

 
Figure (5): D1 and D2 of the first environment 

for EKF-SLAM. 

 
Figure (7): D1 and D2 of the first environment 

for PSO EKF-SLAM 

 
Figure (7): D1 and D2 of the first environment 

for CPSO EKF-SLAM 

 
Figure (8): D1 and D2 of the first environment 

for GA EKF-SLAM 
Another environment which has eight landmarks 

organized in rotational form with different location 

(𝑥, 𝑦),   the varying of the distribution form of 
landmarks inside the environment is no impact on the 
EKF-SLAM performance and other optimization 
techniques this environment can be expressed as 
shown Figures 9, 10,11 & 12 in this environment is 
tested to see the effectiveness of PSO EKF-SLAM, 
CPSO EKF-SLAM, GA EKF-SLAM and Odometry 
in the environment which contains eight landmarks 
and compare it with traditional EKF-SLAM. 
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Figure (9): The environment that tested the 

traditional EKF-SLAM 

 
Figure (10): The environment that tested the 

traditional PSO-EKF-SLAM 

 
Figure (11): The environment that tested the 

traditional CPSO-EKF-SLAM 

 
Figure (12): The environment that tested the 

traditional GA-EKF-SLAM 
The value of MSE1 remained lower than MSE2 

also the performance in the first environment one 
which contains one landmark is not perfect but the 
performance of sixth environment that have eight 
landmarks is very perfect and the performance 
becomes higher as compared to the previous case 

when the number of landmarks is increased from one 
to eight so the distance errors of this environment that 
test the performance of EKF-SLAM, PSO EKF-
SLAM, CPSO EKF-SLAM, GA EKF-SLAM is shown 
in Figs. 13, 14, 15 &16. 

 
Figure (13): D1 Vs. D2 of  environment 
containing six landmarks for EKF-SLAM 

 
Figure (14): D1 Vs. D2 of environment with six 

landmarks for PSO EKF-SLAM 

 
Figure (15): D1 Vs. D2 of environment with 

six landmarks for CPSO EKF-SLAM 
 

 
Figure (16): D1 Vs. D2 of environment with six 

landmarks for GA EKF-SLAM 
 Now, the results of the previous environments are 
start to describe, in Table 4 the MSE1value of EKF-
SLAM is decreased from 0.4023 to 0.1723 when the 
number of landmarks is increased from one to eight 
landmarks and also the performance is increased from 
64.6 to 86.561. 
 Also, the MSE1 value of PSO EKF-SLAM is 
decreased from 0.2923 to 0.0988 and the performance 
is increased from 70.68 to 90.12 when the landmarks 
number is increased from one to eight. The PSO 
results are good when compare it with the GA 
technique. Also, the performance of PSO EKF SLAM 
is higher than the performance of EKF SLAM and 
higher than the performance of the ODOMETRY 
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performance. Further, the MSE1 of CPSO is 
decreased from 0.2154 to 0.0426 and the performance 
(perf.1) is increased from 78.4601 to 95.74. The results 
show CPSO gives good results with few iterations as 
compare with  PSO EKF-SLAM and traditional EKF-
SLAM while the MSE1 value of GA in Table 3 is 
decreased from 0.354 to 0.1344 with increasing the 
landmarks from one to eight and also the performance 
is increased from 64.6 to 86.561. The performance of 
GA is increased when the number of landmarks is 
increased, the MSE1 is still lower than MSE2 in the 
whole environment. the performance of GA  is lower 
than the performance of PSO and CPSO. So, The 
CPSO optimization is more optimal and give the 
better performance that equal to 95.74 while the 
performance of PSO equal to 90.12 with the 
environment that contains eight landmark eight 
landmarks case. 
Table 4. Comparison among different optimization  

techniques 

 
 Figure 17 shows the performance of EKF-SLAM 
and our optimization techniques are in increase when 
the number of landmarks is increased while Figure 18 
shows the mean square error (MSE1) of EKF-SLAM 
and our optimization techniques is decreased when the 
number of landmarks is decreased.  

 
Figure (17): The performance of EKF-SLAM and 
our optimization techniques with different number 

of landmarks 

 

 

Figure (18): The MSE1 of EKF-SLAM and our 
optimization techniques with different number of 

landmarks 

6. Conclusion  
The conclusions of this paper in this part will be 

offered according to their look in this work. 

• The first approach proposed in this work to solve 
the SLAM problem is the Extended Kalman Filter. 
The simulation results show that the performance 
of proposed EKF-SLAM is increased when the 
number of landmarks is increased, where EKF-
SLAM algorithm gives an improvement to the path 
of a mobile robot as compared to the Odometry 
path according to the actual path of mobile robot, 
where the performance of EKF-SLAM is higher 
than the performance of Odometry. The 
performance of EKF-SLAM for the environment 
which contains one landmark is 59.77 while the 
performance for EKF-SLAM for the environment 
which contains eight landmarks is 82.77. 

• Several optimization methods such as GA, 
PSO, and CPSO  based on  EKF are used as an 
optimal solution for the problem of the mobile 
robot navigation in the unknown environment 
and to obtain high performance and correct 
navigation position estimations of a mobile robot. 
The results show the performance of EKF-SLAM 
and our optimization techniques are increase 
when the number of landmarks is increased 
because the performance is affected by Small 
noticeable landmarks because the mean square 
error is decreased when the number of landmarks 
is increased. It was concluded that the CPSO 
gives optimal results as compared with GA and 
PSO with few iterations. The PSO results are 
good when compare it with the GA technique for 
50 iterations. The values of MSE2 and Perf.2 are 
inaccurate because it depended on the Odometry 
readings which is inaccurate and give non-optimal 
path as compared with EKF SLAM and our 
optimization technique. Also, the performance is 
affected by Small noticeable landmarks. 
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