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Abstract 

Technically, medical imaging modalities are quantitative, qualitative, 

and semi-quantitative. Such modalities can generate meaningful and 

valuable quantitative and qualitative data. Correlating predictive outcomes 

with quantitative and qualitative data is a difficult process. Thanks to 

modern computational hardware and advanced machine learning 

algorithms, it is not a demanding job to perform predictive analysis by 

cultivating quantitative and qualitative data. Radiomics is a popular topic 

that studies quantitative data from medical images in order to obtain 

biologically meaningful information for diagnosis, prognosis, theragnosis, 

and decision support. Handcrafted radiomics is a process including 

features based on shape, pixel, and texture-related knowledge from medical 

scans. In the pursuit of advancing the field of radiomics, we have 

developed a cutting-edge radiomics training simulator, powered by 

MATLAB. This tool has been designed for those familiar with MATLAB, 

making it easy for them to transition into the fascinating world of 

radiomics. MATLAB's user-friendly interface and strong support in the 

engineering community provide an ideal platform for this simulator, 

ensuring aspiring radiomics learners have access to the resources they need 

for success. Throughout the paper, purpose, design details and 

methodology of the simulator are described. As a case study, accuracy 

values for KNN, SVM, Naïve Bayes and Linear Classifiers are 0.56, 0.52, 

0.25 and 0.60, respectively. Although accuracy values seem lower, recall of 

0.85 for Linear Classifier gives precise results while considering medical 

application. 
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الماتلاب بالأعتماد   علم الإشعاع القائم على تصميم نظام محاكاة للتدريب على مصنف

 البيراديوميات على
يريل،  رميدان،  محمد سلمان اإ سراء شينغون اإ لياس جانكايا قاسم الجبوري،هديل اإ  اإ

 الخلاصة: 

من الناحية الفنية، تعد طرق التصوير الطبي كمية, نوعية, وش به كمية. ويمكن لهذه الطرائق أأن تولد بيانات كمية  

ونوعية مفيدة وقيمة. يعد ربط النتائج التنبؤية بالبيانات الكمية والنوعية عملية صعبة. بفضل الأجهزة الحسابية الحديثة 

ن اإ  جراء التحليل التنبؤي من خلال تنمية البيانات الكمية والنوعية أأصبحت ليس  وخوارزميات التعلم الآلي المتقدمة، فاإ

بمهمة صعبة. يعد علم الإشعاع موضوعاً شائعًا يدرس البيانات الكمية من الصور الطبية من أأجل الحصول على معلومات 

امل معها يدويًا هي عبارة  ذات معنى بيولوجي للتشخيص والتنبؤ والعلاج ودعم القرار. أأن ميزات علم الإشعاع المتع

عن عملية تعتمد على الخصائص المش تقة من الشكل والبكسل وبنية النس يج الموجودة في الصورة نفسها. في السعي  

للتقدم في مجال علم الإشعاع ، قمنا بتطوير نظام محاكاة متطور للتدريب الإشعاعي, بالأعتماد على برنامج الماتلاب. تم  

لئك المطلعين على برنامح الماتلاب، مما يسهل عليهم الانتقال والتعامل مع عالم الاشعاع الراديوي تصميم هذه الأداة لأو 

الرائع. توفر واجهة برنامح الماتلاب المصممة سهولة للاس تخدام والدعم القوي في المجال البحثي والعملي للمجتمع الهندسي  

ح يضمن  مما  المحاكاة،  لهذه  مثالية  منصة  توفير  طريق  على  عن  الراديوي  الإشعاع  علم  في  الطموحين  المتعلمين  صول 
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المصادر التي يحتاجونها لتحقيق النجاح. خلال هذا البحث، تم وصف الغرض, تفاصيل التصميم ومنهجية نظام المحاكاة  

لـ    بالتفصيل. الدقة  قيم  تبلغ  حالة،  الخطية    Naïve Bayesو  SVMو  KNNكدراسة    0.52و   0.56والمصنفات 

ل أأن اس تدعاء    0.60و  0.25و للمصنف الخطي يعطي    0.85على التوالي. على الرغم من أأن قيم الدقة تبدو أأقل، اإ

 نتائج دقيقة عند النظر في التطبيق الطبي. 

1. Introduction  
Medical imaging technology dates back to the 

discovery of X-ray, 125 years ago [1]. Usage of 
computerized tomography, magnetic resonance 
imaging, positron emission tomography, ultrasound 
imaging become de facto standard for modern-day 
clinical practice. Today’s radiologists can image part of 
or whole human body in detail using state-of-the-art 
imaging modalities, Computed Tomography (CT),   

Magnetic Resonance Imaging (MRI), Positron 
Emission Tomography (PET). Instruments of this 
kind have evolved into essential components for 
diagnosis, prognosis, theragnosis, and decision 
support. Their low cost, non-invasive imaging 
capabilities, promising technological advancements, 
and superior imaging precision make them stand out 
compared to alternative options.  

Medical imaging modalities are based on analog 
imaging technologies generating qualitative data which 
urges subjective decisions based on visual or verbal 
inspections. With the information technologies era, 
door of the digital world is opened to radiologists, 
although they still prefer to visual inspections. Thanks 
to computerization, researchers focused on 
computerized quantitative analysis of medical imaging 
for clinical purposes, which is known as (Computer-
aided Diagnosis) CAD systems. These systems excel at 
conducting intricate quantitative assessments using 
quantitative data. Radiomics is an emerging field that 
harnesses this type of data to its advantage. 

1.1 Radiomics 
Radiomics is one of the most popular topics 

nowadays which processes medical imaging data to 
obtain quantitative imaging metrics, called as radiomic 
features. It analyzes tissue and lesion characteristics 
like heterogeneity, shape, size, textural, filtered-based, 
histogram-based even combination of clinical and 
genomics data. Radiomics is pronounced first in the 
study Hugo Aerts et al. where they studied CT images 
of 1019 patients with lung or head-and-neck cancer. 
They utilized publicly available datasets in The Cancer 
Imaging Archive (TCIA) archive, Lung1, Lung2, 
Lung3, (Head & Neck) H&N1, H&N2, H&N3 and 
The Reference Image Database to Evaluate Therapy 
Response (RIDER) and decoded tumor phenotypes 
by using noninvasive 440 quantitative radiomics image 
features. 

Radiomics features are categorized into five main 
groups: Size and shape-based features, image intensity 
histogram related features, relationship between image 
voxels/pixels, texture extracted from filtered images 
and fractal features. Mathematical descriptions of such 
features can be found in literature independent of 
imaging modality [2-5]. In order to establish a 

consensus on radiomics features, an initiative 
dedicated to standardization, known as the Image 
Biomarker Standardization Initiative (IBSI), was 
formed. Within this initiative, a coalition of twenty-five 
teams collaborated to contribute to the standardization 
efforts, notably, Hugo Aerts and his team were active 
participants in this study. They proposed standardized 
radiomics features in three phases which are 
Morphological Characteristics, local intensity, 
intensity-based statistics, intensity histogram, intensity 

volume histogram, Gray Level Co-Occurrence 
Matrix (GLCM), Gray Level Run Length Matrix 
(GLRLM), Gray Level Size Zone Matrix (GLSZM), 
Gray Level Distance Zone Matrix (GLDZM), 
Neighborhood Gray Tone Difference Matrix 
(NGTDM), Neighboring Gray Level Dependence 
Matrix (NGLDM). 

To extract radiomics features, a Python 
software module, called PyRadiomics, is 
developed by, of course, Hugo Aerts et al [6]. 
PyRadiomics can provide four stages of 
radiomics analysis: Loading and preprocessing of 
scanning image, performing filtering processes, 
calculation of radiomics features. For filtering 
process, Laplacian of Gaussian, Wavelet, Square, 
Square Root, Logarithm, Exponential are filter 
types for filtering process. It can extract around 
1500 radiomics features from a scanning image 
those are First Order Statistics, 2D Shape based, 
3D Shape based, GLCM, GLRLM, GLSZM, 
NGTDM and (Gray Level Dependence Matrix) 
GLDM. It utilizes some third-party package like 
SimpleITK for preprocessing, numpy for feature 
calculation, PyWavelets for wavelet filtering, 
pykwalify for enabling yaml parameter file 
checking and six for Python 3 compatibility [7]. 

1.2 Lung Cancer 
Radiomics plays an indispensable role in advancing 

our understanding of cancer, guiding its diagnosis, 
treatment, and management, heralding a new era of  
precision oncology. Cancer stands as one of the most 
prevalent causes of modern mortality, capable of 
originating anywhere in the body and metastasizing to 
distant sites. Based on the emerging part, there are 
many types of cancer: Breast cancer, leukemia, 
sarcoma, prostate cancer, melanoma, colorectal 
cancer, head and neck cancer, carcinoma, lung cancer. 
Lung cancer is the leading cancer type, which kills 
people most with 1,796,144 deaths reported in 2020, 
representing %18 of whole cancer deaths. In just a 
century, it has transformed from being a rare disease 
into one of the prominent cancer types of the twenty-
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first century [8-9]. According to (Global Cancer 
Observatory) GLOBOCAN, which is an online 
database about global cancer statistics for 185 
countries and 36 types, incident cases of lung cancer is 
expected to increase by around 64% by 2040 whereas 
death cases is 67% [10]. Smoking is leading risk factor 
for lung cancer with 80% related to tobacco 
consumption. Excess risk among addicted smokers 
compared to never-smokers is in the order of 20-50-
fold [11].  To classify cancer stage, there are two types 
of cancer staging systems: TNM staging system and 
numerical staging system. In TNM-staging, T 
represents size of primary tumor, N shows nearby 
lymph nodes, N is used to describe distant metastasis. 
In numerical staging system, progression of cancer is 
classified. In this staging Roman Numeral is used. 
Stage is numerated from 0 to IV. As the severity of 
progression is increased, stage is increased, too. The 
most common cancer staging system is TNM-Staging 
System. This staging system for lung cancer is 
organized by International Association for the Study 
of Lung Cancer. Currently, 9th edition of TNM staging 
is proposed and revision for 9th edition is about to 
come. Revised version is expected to be in use in 
January 2024 [12]. The most frequent type of lung 
cancer is non-small cell lung cancer with frequency of 
%80 of all lung cancer cases. Basically, there are three 
types of NSCLC (Non-Small Cell Lung Cancer): 
adenocarcinoma with 40%, squamous with 30% and 
large cell with 16% [13]. Nowadays, it is global attempt 
to categorize the tumor as much as possible and to 
cultivate as many information as possible from the 
tumor. 

1.3 The Cancer Imaging Archive 
To promote researchers to utilize and share publicly 

available datasets, National Institute of Health (NIH) 
created a imaging archive called The Cancer Imaging 
Archive (TCIA). It is a centralized scanning image 
repository containing more than 100 collections (above 
3 million images). It includes Quantitative Imaging 
Network (QIN), Quantitative Imaging Biomarkers 
Alliance (QIBA), RIDER, LUNG1, LUNG2, LUNG3, 
Head-Neck Cetuximab and more well-known 
collections. The most commonly used scanning 
modality is Computerized Tomography (CT), followed 
by Magnetic Resonance Imaging (MRI), and then 
Positron Emission Tomography (PET), among others. 
The most extensively studied human body parts are, in 
order of prominence, the colon, followed by the brain, 
the chest, and finally the breast. The most popular 
collection of TCIA is LUNG-1 dataset. It is produced 
from Lung CT scans of 422 NSCLC patients from 
Maastricht University Medical Center, Limburg, 
Netherlands. Limburg, Netherlands. It consists of CT 
DICOM imaging scan files, manual segmentation files 
and clinical data including age and gender of patients, 
TNM staging of tumor, survival times and death status 
of patients. To the best of our knowledge, more than 
ten studies are carried out by using LUNG1 dataset [14-
23]. In this study, LUNG1 dataset is used for testing 
the Radiomics Training Simulator. 

1.4 Literature Survey 
There are many simulation studies about radiomics 

in literature: One of them is by S. Marinov et al. They 

designed a radiomics software implemented in 
MATLAB. It is a very handy and elegant GUI app 
consisting of 5 parts: loading DICOM images, viewing 
DICOM images, adjusting parameters, creating, and 
modifying (Region of Interest) ROIs and image masks 
and calculations sections. Main (Graphical User 
Interface) GUI is rather neat and compact. They have 
IBSI-compliant features those can be viewed on the 
page other than main GUI. They tested their software 
by utilizing L1 and L2 physical phantoms. They 
extracted 23 different image related features [24]. Other 
application developed on MATLAB is by G. Pasini et 
al. They designed a MATLAB package named as 
matRadiomics. Contrary to previous study, they have 
developed a complete radiomics framework including 
importing DICOM image, segmentation of loaded 
images, feature extraction powered by pyRadiomics, 
feature selection and building machine learning models. 
It can show ROC curve and confusion matrix at the 
end of analysis. They tested their application by using 
(The Lung Image Database Consortium image) 
LIDRC-IDRI dataset. They extracted 107 features [25].  
Another radiomics software study is by Z. Zhou et al. 
They designed a user-friendly software having GUI 
mostly in Python. Like the study by G. Pasini et al., it 
consists of complete radiomics framework. The first 
part is Image preparation. Multi-modality images are 
loaded and pre-processed, data filtration etc., then it is 
split in to training set and validation set. The second 
part is lesion labeling. Lesions or tissues are labeled. 
The third part is feature extraction. In this part, the 
software extracts quantitative image features by using 
pyRadiomics. Next part is feature selection part. To 
reduce the number of features and to avoid over-fitting, 
the most relevant features are selected. The part after 
feature selection is classifier training. In this part, seven 
machine learning algorithms are available to train. The 
last part is evaluation and visualization. Prediction 
performance of the model and feature-related 
visualizations are given at the end. Other studies, 
developed and benchmarked radiomics simulators, are 
given as below. 

In the literature, there are few radiomics simulator 
tools available, and this inadequacy has negative 
implications for radiologists' training and decision 
support mechanisms. In this study, to make radiologists 
and researchers familiarize Artificial Intelligence (AI) 
and Radiomics and promote to become an active 
profile in this revolution, MATLAB-based training 
simulator is designed. Stand-out features of the 
simulator over it’s rivals are simplicity, compactness 
and detailed classification analysis results. It can 
provide confusion matrix, ROC curve and 
classification performance parameters in once. Design 
details of the simulator is given in materials and 
methods section, testing results are given in results and 
discussion part and finally summary of the key findings 
and insights presented in the study are given in 
conclusion part. With this study, it is achieved that 
radiologists can use the designed tool for training and 
decision support aims. 
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Table (1): Radiomics Simulator Studies and Their 
Phantoms and Features 

Radiomics 
Simulators 

Dataset/ 
Phantom 

Number of 
Features 

Auth. 

Pyradiomics, 
MITK1, LIFEx, 
SERA2, CaPTk3, 

IBSI Digital 
Phantom 

173 
features 

2020, M. 
Lei et al., 

[26], 

matRadiomics 
LIDRC-

IDRI 
Dataset 

107 
features 

2022, G. 
Passini 
et al., 
[27] 

Pyradiomics, 
MITK, LIFEx, 
SERA, CaPTk, 

A1, A2 

IBSI Digital 
Phantom 

173 
features 

2021, M. 
Lei et al., 

[28] 

MIRP, S-IBEX4, 
Sopiha DDM, 

RaCaT5, SERA, 
PyRadiomics, 
RadiomiCRO 

IBSI Digital 
Phantom, 
ImSURE 

919 
features 

2022, A. 
Bettinelli 
et al, [29] 

RaCaT 

NEMA6 
image 
quality 

phantom 

480 
features 

2019, E. 
Pfaehler 

et al., 
[30] 

1MITK=The Medical Imaging Interaction Toolkit 
2SERA=The Standardized Environment for Radio7mics Analysis Package 
3CAPTk=Cancer Imaging Phenomics Toolkit 
4S-IBEX=Standardized image biomarker explorer 
5RaCaT=Radiomics Calculator 
6NEMA= National Electrical Manufacturers Association 

 

2. Materials and Methods 
2.1 GUI (Graphical User Interface) Design 

The simulator software is designed in MATLAB by 
using AppDesigner. It is designed for classification 
purposes. User interface design is given in Fig. 1.  

 
Figure (1): Graphical User Interface Design 

The simulator user interface has basically six main 
parts: Tabular data import part, test size and classifier 
method selection part, classification performance 
metrics part, confusion matrix visualization part, 
tabular data visualization part and ROC curve 
visualization part.  In tabular data part, data and target 
table files are imported. In test size and classifier 
method part, desired ratio and method is selected. And 
simulation is run. In tabular data visualization part, 
imported data can be viewed. In third part, 
performance results are observed. In fourth and sixth 
parts, confusion matrix and ROC curve can be viewed 
as an auxiliary property.  

 
Figure (2): Workflow of Simulator Software Package 

Execution of simulator workflow is depicted in 
detail and carefully in Fig.2. After data and label 
selection, test and train sets are created. Accuracy, 
recall, precision, F1-score, confusion matrix, ROC 
curve and tabular view are visual outputs of the 
simulator. In this software, to predict status of patients, 
four classifier algorithms are utilized: KNN, SVM, 
Naive Bayes and Linear Classifier. 
2.1.1 KNN (K-Nearest Neighbour) 

It is a simple non-parametric classification 
algorithm. Main mechanism is to assign unlabeled 
sample points to the class of the nearest of previously 
labeled points. Assignment mechanism is based on 
distance between data items [31]. The first step of the 
algorithm is to choose best “k”, the number of 
neighbor (NN). Number of neighbor can be chosen by 
user or based on the impact of performance or even vs. 
odd cases. NN can be determined by user while 
considering accuracy and performance, overfitting and 
underfitting cases, dataset size and data distribution and 
computational issues. NN is set based on performance 
metrics like accuracy for underfitting and overfitting 
issues, recall and precision for the proportion of 
positive predictions among other cases, F1 score for 
balance between precision and recall, ROC Curve and 
AUC for better model performance to maximize AUC.  

Table (2): Distance metrics and their formulas 

Distance Name Formula 

Eucledian Distance √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 

Cosine Distance (𝑥𝑖  ∙ 𝑦𝑖) /(|𝑥𝑖|∙|𝑦𝑖|) 

Mahalanobis Distance √(𝑝1 − 𝑞1)𝑇𝑆−1(𝑝1 − 𝑞1) 

Jaccard Distance 
|𝑝1  ∩ 𝑞1|

|𝑝1  ∪  𝑞1|
 

 

NN can be chosen based on even vs. odd cases. 
When NN is odd, two neighbors of one class is 
eventually present, possibly one neighbor of another 
class is present, ensuring a majority decisive vote. For 
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the even case, there is always possibility for an equal 
number of neighbors from different groups stating no 
majority. The second step of the algorithm is to 
calculate distance. For a function to be considered as a 
metric, non-negativity, indiscernibility, symmetry and 
triangle inequality should be satisfied. The third step is 
to find nearest neighbors. It is done by calculating 
smallest distances for K points with target data points. 
As a final stage, classification is done by majority voting 
by counting the number of data points in each group 
among K nearest neighbors. Target data point is 
classified by most common among its neighbors.  
There are many distance types: Minkowski distance, 
Manhattan distance, Cosine distance, Jaccard distance, 
hamming distance, and Euclidean distance. The most 
popular distance metric is Euclidean. Some of the 
distances and their formulas are given in Table 2. 
2.1.2 SVM (Support Vector Machine) 

Support Vector Machine, shortly SVM, is based on 
statistical learning theory [31]. How this algorithm 
works is to seek a hyper plane to separate the data into 
classes so that maximum margin of separation between 
classes with minimum error is obtained. The first step 
of the algorithm is feature selection. It is required to 
transform the original raw training data into a set of 
features, for training the classifier. There are three main 
types of feature selection methods: embedded 
methods, filter methods and wrapper methods. 
Embedded methods are one of most common method 
in SVM analysis. In embedded methods, to select 
features for raw input dataset, kernel functions are 
utilized. Linear, nonlinear, polynomial, sigmoid, 
gaussian, ANOVA, radial basis function are kernel 
functions for SVM. The most popular of them is radial 
basis function. Some of the kernels and their functions 
are given in Table 3. 

Table (3): Kernels and Their Functions 

Kernel Kernel Function 

Linear 𝑥𝑇𝑦 

Polynomial (𝛾𝑥𝑇𝑦 + 𝑐0)𝑝 

RBF1 exp (𝛾𝑥𝑇𝑦 + 𝑐0) 

Tanh tanh (𝛾𝑥𝑇𝑦 + 𝑐0) 
1RBF=Radial Basis Function 

 

Kernel trick or kernel method is utilized to 
transform raw input data to a higher-dimensional 
feature space by using similarity function with kernel 
matrix. Kernels in models function as mapping data to 
higher dimensional space and decision boundary 
creation. Linearly seperable data is more favorable than 
non-seperable. To make the data seperable, kernels 
precisely map the input data into a higher-dimensional 
feature space where data is linearly seperable. Correct 
kernel can capture the regarding pattern in data to 
create a linear separation. Better separation, better 
performance, higher accuracy. Kernels consume higher 
computational resources while operating. Therefore, 
correct kernel can be more computationally-intelligent 
than others. To find a decision boundary, kernel 
function induces a hyperplane that separates feature set 
elegantly.  As a second stage, SVM is trained by using 
already-known labelled prior data. As a final stage 
machine learning model is evaluated based on its 

sensitivity, specificity and accuracy in differentiating 
between classes.  
2.1.3 Naive Bayes 

Naive Bayes (NB) is a probabilistic classifier which 
is based on Bayes Theorem. It classifies the dataset by 
building a function assuming all features in the dataset 
are independent. This algorithm takes less time for 
training process. Contrary to KNN and SVM, there are 
no free parameters to set. Therefore, implementation 
of NB is easier. In NB, corresponding instances of n-
dimensional vector of random features in domain Dx 
are associated with unknown target values in domain 
Dy. Association work is done by a probabilistic 
function.  The aim of this method is to select 
unobserved random variables set which maximizes the 
posterior probability. Classification is performed based 
on a probabilistic calculations. NB is so called naïve 
because NB treats all instances in the domain Dx 
regardless of calculation order. It is naïve because it is 
assumed that probability of each instance is 
independent of any other instances. By using Bayes 
Theorem, overall probability is computed by 
calculating prior probability of a class, conditional 
probability of instances and probability of each 
instances. All in all, it is based on a simplistic hypothesis 
and it’s practical effectiveness, simplicity and efficiency 
make it popular among other methods in classification 
work of machine learning.   
2.1.4 Linear Classifier 

Linear classifier (LC) is a one of the simplest and 
easiest method for classification. It is utilized for binary 
or multiclass classification tasks. Attributes of the 
dataset are given to the model as vector form. This 
classifier method works very well such as text 
classification and rather good for datasets with many 
variables. In LC, every feature or attribute is weighted 
in the training phase by using labeled data and each 
weight of the model is tuned by utilizing optimization 
techniques. Gradient descent, Newton’s Method, 
Conjugate Gradient, Coordinate Descent, Bayesian 
Optimization, Evolutionary optimization and 
regularization techniques are some of the well-known 
optimization techniques to adjust the weight of each 
features. Weight is updated based on the loss function 
of the optimization operation.  

Table (4): Linear Functions 

Distance Name Formula 

Linear Function 𝑓(𝑥) =  𝑤𝑇𝑥 + 𝑏 

Perceptron Model 𝑓(𝑥) =  𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏) 

Logistic Regression 𝑓(𝑥) =
1

1 + 𝑒−(𝑤𝑇𝑥+𝑏)
 

Softmax Function 𝑓𝑗(𝑥) =
𝑒𝑤𝑗

𝑇𝑥+𝑏𝑗

∑ 𝑒𝑤𝑘
𝑇𝑥+𝑏𝑘𝐾

𝑘=1

 

After operation, a linear classifier is fed with input 
data points with feature vector having adjusted weights. 
Linear classifier multiplies the weight with input data 
and it is classified based on the product passes 
threshold or not. There are many linear functions in 
literature but some of them are listed in the Table.4. 

Working procedure of the simulator consists of 6 
main steps. First, files concerning data and target is 
uploaded to the software. Then, data is split into test 
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and train based on split ratio. After that, classification 
method is chosen. After these pre-execution steps, 
classification process is started. As classification 
performance metrics, confusion matrix, tabular data 
view and ROC curve are obtained for analysis. 
Instruction-flow for the app user is given in Fig.3.  

 
Figure (3): Instruction-flow for the App User 

2.2 Dataset 
In this study, a publicly available lung cancer 

dataset consisting of DICOM and clinical data, 
LUNG1 dataset, is employed. LUNG1 dataset is 
collected by researchers in MAASTRO, Maastricht 
University Medical Centre+, Department of 
Radiotherapy. This dataset is the collection of clinical 
and radiological image data of 422 NSCLC lung cancer 
patients.  

Table (5): LUNG1 dataset Clinical Features 

Age 

<65 
>65 
Mean (years) 

150 
250 
68 

Gender 

Male 
Female 

290 
132 

Tumor T-Stage 

T1 T2 T3 T4 

93 156 53 117 

Tumor N-Stage 

N0 N1 N2 N3 

170 23 141 85 
Tumor Overall Stage 

I II IIIa IIIb 

93 40 112 176 

Histology 

Large 
cell 

Squamous cell 
carcinoma 

adenocarcinoma 

114 152 51 

This dataset is announced first time in literature in 
the study by Hugo Aerts et al [32]. In their study, they 
employed 7 datasets to cultivate decision-making 
supportive radiomics features. LUNG1 dataset 
consists of 52073 CT-scan images with size of 33 GB. 
It includes RTSTRUCT (radiotherapy structure set) 
and DICOM SEG files having manual delineation by 
a professional radiation oncologist. Detailed 
information about the dataset is given in the Table.5. 

 
3. Results and Discussion 

To test the classifier simulator, 2-year Survival 
classification of LUNG1 data is performed. In this 
dataset, there are both clinical and radiological data for 
422 NSCLC patients. Survival-status of the patients 
are modified whether they are alive or not up to 2 
years. This tabular data is defined as “Target File” and 

it is imported. Radiomics features of DICOM images 
of 422 patients are extracted by PyRadiomics. 
Resultant tabular data is defined as “Data File” and it 
is imported. For the sake of rule of thumb, test data 
split of size of input data is defined as 0.2. 
Classification performance metrics are calculated 
based on (1-4). Accuracy is a performance metric 
which correctly measure the proportion of correctly 
classified instances among whole instances. Although, 
it is used as a general measure of model prediction 
performance, it fails in imbalanced classes where one 
class dwarfs other class. Also, it is rather risky to just 
use it in precision-matter applications like medical, 
military or financial applications. Precision is another 
metric to show model performance. It measures the 
proportion of true positive predictions among all 
predictions. Just like Accuracy, it is not recommended 
to just use it in cost-aware applications. If cost of false 
positive is high and it is desired to minimize false 
alarms, other metrics than precision should be 
concerned. Recall or sensitivity is another metric to 
measure true positive predictions among all actual 
positive instances. If false negative is a concern in 
sensitive applications, recall should not be used 
individually. In cases of incorrect flag-up, it can 
mislead the prediction system. F1 score is a hybrid 
metric of precision and recall. It is harmonic mean of 
them. It is more reliable than accuracy alone in case of 
uneven class distribution or false positive or false 
negative are concerned. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃1 + 𝑇𝑁2

𝑇𝑃 + 𝐹𝑁3 + 𝑇𝑁 + 𝐹𝑃4
         (1) 

    𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                      (2) 

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×
𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
           (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                   (4) 

1True Positive, 2True Negative,3False Negative, 4False Positive 

 

For four different classifiers of 2-year survival 
status, results of the metrics are given in Table 6 and 
Fig.4. It can be seen that LC has dramatically better 
performance. 

Table (6): Performance Metrics for Four 
Classifier Methods 

Classifier 
Method 

Accur. Precis. Recall F1 

KNN 0.56 0.43 0.59 0.49 
SVM 0.25 0.20 0.34 0.25 

NaiveBayes 0.52 0.43 0.56 0.49 

Linear  0.60 0.45 0.85 0.59 
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Figure (4): Performance Results for ML Models 

Among four classifier methods, the most powerful 
classifier method is Linear Classifier Method with the 
recall of 0.85 where SVM has initial settings, kernel as 
rbf, kernel polynomial function degree as 3, 
regularization parameter as 1.0 and tolerance for 
stopping criterion as 0.001. Although performance 
metrics like accuracy and precision seem low, feature 
selection could be a way to improve the performance 
metrics because there are 1224 features, most of them 
do not have effect on performance metrics. To 
improve the classification performance, elegant 
feature selection methods can be applied. Close values 
of F1-score and accuracy for LC show that dataset 
class distribution is balanced for the test case and 
accuracy can be used as a performance metric alone. 

 

4. Conclusion 
Using MATLAB AppDesigner, a training 

simulator is designed, dedicated to training of 
radiomics applications. The software package was 
tested successfully for LUNG1 dataset of NSCLC 
patients. The tool was designed for applications for 
NSCLC disease, but it is not limited to this application. 
Although it contains radiomics features of CT lung 
scanning DICOM images of NSCLC patients, other 
modalities can be used. This study is conducted to 
accustom radiologists to artificial intelligence and 
radiomics revolution and make them participate and 
contribute to this field. Case test/train split study 
shows that although accuracy values of KNN, SVM, 
NB and LC, those are 0.56, 0.25, 0.52 and 0.60, 
respectively, seem lower, LC shows highly promising 
performance especially recall of 0.85 in medical 
application is considered, where sensitivity is 
concerned.  
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